GROUND MOVEMENT STUDY

LIVERMORE VALLEY, CALIFORNIA

Prepared for Zone 7 Water Agency




AGENDA

* Introductions
e Presentation
e Questions Regarding Study
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PRESENTATION OUTLINE

e Purpose of Study — Evaluate Livermore Valley Ground Movement Processes
Soil-related Groundwater-related Tectonic-related

* Soil/Geologic/Groundwater Setting for Livermore Valley
e Expansive Soil Movement

Active zone Effects on structures Associations
e Groundwater Fluctuations and Effects
Elastic ground movement Inelastic ground movement

Tectonic Movement
Ongoing Monitoring — Findings
Ground surface elevation Groundwater elevation Tectonic
Observed Distress — What we’re seeing, not seeing
e Conclusions
e Questions On Study Findings
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PURPOSE

* Purpose:

- Identify the primary movement mechanisms that have potential to
result in significant ground movement in the Livermore Valley.

- Develop an understanding of how those processes work, and how
they are typically manifested at the ground surface.

- Evaluate the kinds of impacts these various movement mechanisms
may have in the Livermore Valley.
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SCOPE

e Literature Review — Research, assemble and review information such
as regional geologic mapping and reports; regional soils mapping;
geohydrologic reports; tectonic modelling.

* Aerial Imagery Review

e Review Monitoring Data — Including ground surface elevation
monitoring; groundwater level monitoring; GPS (tectonic) monitoring.

e Reconnaissance

e Summary Report — Describing conclusions regarding ground
movement mechanisms, how they are expressed, and likely impacts
in the Livermore Valley.
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(Adapated from SFEI, 2013)
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(Geology from Knudsen and others, 2000)

RECENT GEOLOGIC DEPOSITS, MAIN GROUNDWATER BASIN
(street base screened back)
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(Geology from Knudsen and others, 2000)

RECENT GEOLOGIC DEPOSITS, MAIN GROUNDWATER BASIN
(street base [~2004] added)




After SFEI (2013)

ARROYO MOCHO AND

ARROYO LAS POSITAS — Historic Setting
- Confluence in broad marsh area

| - No single continuous creek link to
Arroyo de la Laguna

)y“‘/)};; Valley Freshwater Marsh
—
Wet Meadow

Willow Thicket

Alkali Meadow




From SFEI (2013)
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CONFLUENCE OF TASSAJARA CREEK AND ARROYO LAS POSITAS
- Poorly defined flow paths and creek channels 12
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Figure 4.47. Mocho distributaries.

Figure 4.28.“Proposed location of the Pleasanton Canal Systems.” This 1907 Ea I’|y maps consiste ntly show Mocho's

map shows proposed ditches that cut across the marsh complex. A few patches of distributaries with ma ny sma Il branchi ng

remnant willow thicket remained at the time, circled in red here. (Tibbetts 1907b,

courtesy Earth Sciences and Map Library, UC Berkeley) ChannEIS’ although the exact location varies.

(’ CE2G From SFEI (2013) CONFLUENCE OF ARROYO MOCHO AND ARROYO LAS POSITAS
i Gt - Poorly defined flow paths and creek channels
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SOIL EXPANSIVITY —
Percent Soil Volume Change with Change in Soil Moisture
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EXPANSIVE SOIL MOVEMENT
- Processes and Associations
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E Schematic illustration of how a structure can be distorted by shrinkage of
%} soils around its perimeter, swelling of soils beneath the interior, or both.
z| Note that trees can extract moisture from soils.
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3;1 Schematic illustration of how a structure can be distorted by swelling of
=| soils around its perimeter.

Figure adapted from Rogers (2015)
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EFFECT ON
STRUCTURES
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EXPANSIVE SOIL — TAKEAWAY POINTS

e Distribution of expansive soil is controlled by area geology and
natural setting

e Areas experiencing distress are strongly associated with occurrence of
expansive soil

e Nature of distress is a localized phenomenon, strongly influenced by local
conditions (cover, drying, irrigation, vegetation, grading, aspect, etc.)

 The more extreme the swings in moisture content, the more the effect is
observed
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Unconfined
aquifer

Confined
aquifer

When water levels drop, due mainly
to seasonal increases in ground-water
pumping, some support for the over-
lying material shifts from the pressur-
ized fluid filling the pores to the gran-
ular skeleton of the aquifer system.

Land surface

- isand ahd gravet -

. .| The increased load
compresses the skele-
.| ton by contracting the
- "« - | pore spaces, causing

.. .| some lowering of the
land surface.

[ Clay and silt

When ground water is recharged
and water levels rise, some sup-
port for the overlying material
shifts from the granular skeleton
to the pressurized pore fluid.

7 Land surface

% Under the decreased
" + .| load the pore spaces

and the skeleton ex-
| pand, causing some

| raising of the land
surface.

Pore
space -

Clay
particle —

Contracting aquifer-
system skeleton

Expanding aquifer-
system skeleton

\\“m\_\_\_
H)(_

 (aquitards)

e "

Depth
to water

A

Time

Not to scale

Decreased fluid pressure
causes the skeleton to
contract, creating some
small subsidence of land
surface.

Increased fluid pressure
expands the skeleton,
creating some small uplift
of land surface.

(from Galloway and others, 1999)
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ELASTIC (REVERSIBLE) SUBSIDENCE/UPLIFT
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= :I Recoverable land subsidence caused by
Land 5u::face reversible elastic deformation

Permanent land subsidence caused by
irreversible inelastic deformation

Compaction of the aquifer system
is concentrated in the aquitards.

—3

Time

Granular aquitard | Rearranged, compac- i
skeleton dgﬁning fluid- [ | ted grangular aquitard Long-term decline in water level
filled pore spaces skeleton with reduced modulated by the seasonal cycles
storing ground water porosity and ground- of ground-water pumpage

water storage capacity
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GROUNDWATER FLUCTUATIONS —
TAKEAWAY POINTS

* Inelastic ground subsidence from pumping is a “long wavelength”
phenomenon, typically detected over distances of miles, with
very low angular distortion

e Distress typically seen as flexing (large radius of curvature), rather
than cracking/breakage of surface improvements (e.g. curbs,
foundations)

 Groundwater levels have to drop below historic lows for there to be
potential for inelastic subsidence (not all sediments susceptible)

e Elastic response is also “long wavelength”, is characteristic of
recharge/withdrawal cycles, is typically minor (e.g. on order of <0.1
ft/yr) and cyclic
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(Adapted from Norfleet Consultants, 2004)
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NERALIZED GEOLOGIC/TECTONIC MAP
OF THE LIVERMORE VALLEY

|:| Q- Basin fill

~4_ General location of Fault

Pli - Pliocene/Pleistocene
M - Miocene

E - Eocene

K - Cretaceous

f - Franciscan

General Bed Strike and Dip

(barb on overthrust plate)

TECTONIC

CONTRIBUTIONS

TECTONIC CREEP
- Observed along some faults

UPLIFT/SUBSIDENCE
- Observed at scale of ranges
and basins

28




‘ (from Burgmann and others, 2006) * i\ é\%:%
y _f .‘."‘ :"_K?/

R "?‘?-Oo - e -9,, ) ——]

W _ wn

—— 2 e =5

I e - MD - < 400 ‘//

Concord fault_, .- & <o L / o . .

PRI Coiavoras taut P Horizontal plate motions (black arrow =
. % ] - ——

L, T T s —_
~ -, - %.“ " --—-—-

L. CeFIXED LUTZ NS

3 Y 4.' (e :
S " "San Andreas fault #=
= *s . L
oy e s o
=, il . . _..‘?!

<= ~ ‘et o &
San Gregorio faul NP

.
:_.-_- —
)
e~

<20 mm/yr

__ -12-11-10-9 8 -7 6-564-3-2-10123 45
1992-2000 observed range rates (mm/yr)

£+ CE&G

CaL ENGINEERING & GEOLOGY

vector) in mm/yr

Vertical motion (uplift = red; subsidence =
blue) in mm/yr

TECTONIC PLATE MOTIONS
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TECTONIC MOVEMENTS — TAKEAWAY POINTS

e \Very long wavelength phenomena, typically detected over distances
of tens to thousands of miles unless right at a fault

e Rates tend to be fairly stable
 Rates very low (on order of a few mm/yr)
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ONGOING MONITORING
Findings in Livermore Valley Area

e Ground surface elevation monitoring — Biannual, by Zone 7. (Ref.
Zone 7 GWMP Annual Report for WY2014). Expanded 2002 by Zone
7; considered prudent groundwater management practice.

e Groundwater elevation monitoring — Various schedules
(biannual/monthly/datalogger), by Zone 7. (Ref. Zone 7 GWMP
Annual Report for WY2014). Monitoring by Zone 7 since at least 1957,
considered required for sustainable groundwater management.

e GPS/INSAR ground surface monitoring — ongoing by USGS, UC
Berkeley, others; ref. Burgmann et al.(2006), Argus and Gordon (2001)

* Precipitation, Water Consumption— ongoing by Zone 7, others.
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GROUND SURFACE ELEVATION MONITORING RESULTS WY2014
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Ground Surface Elevation Observations

* Trends show annual cyclicity on order of up to about 0.05 ft

e Relatively minor long-term change in elevation even through current
drought (e.g. maximum net change in elevation since 2002 is 0.1 ft)

» Seeing localized small variations; not seeing basin-wide drops in
elevation

e Benchmarks differ in types of foundations used; those on shallower
foundations appear to reflect expansive soil movement
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Precipitation/Irrigation Trends

e Broadly, precipitation about 63% of average in WY2013, about 40% of
average in WY2014, and about 85% of average in WY2015.

e Conservation has resulted in about 70% to 80% reduction in urban
irrigation in 2014 and 2015 (for Zone 7 service area).

e Result is less water input to surficial soils from both these sources
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(Provided by Zone 7, 2015)
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Historical Groundwater Elevations
at a Key Well
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Schematic illustration of how a can be d by of
soils around its perimeter, swelling of soils beneath the interior, or both
MNote that trees can extract moisture from soils.

OBSERVED DIST

o [ bt

o cranad // I:%‘J | - As Constructed
/ w2\

Schematic illustration of how a structure can be distorted by
soils around its perimeter.

Parking lot or other
impervious surface

Il - Under Moisture Loss

Conditions
Concentrated distress
near edge of pavement
/ " — N
Moisture loss slower ! i
under slab

Decending Soll Slope
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CRACKING AND DIFFERENTIAL VERTICAL OFFSET -
Concentrations Near Large Exposed Unpaved Areas,
Slopes (e.g. Canal Banks) In Areas With Expansive Soils,
+/- Rows of Trees




CRACKING AND DIFFERENTIAL VERTICAL OFFSET -
Concentrations Near Large Exposed Unpaved Areas, Slopes
(e.g. Canal Banks) In Areas With Expansive Soils, +/- Tree Rows
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DISTRESS EXAMPLES —
Concentrations Near Large
Exposed Unpaved Areas, Slopes
(e.g. Canal Banks) In Areas With
Expansive Soils, +/- Tree Rows
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CULVERTS AND APPROACH RAMPS — (Example)
Culvert has deeper foundations, bottoming in likely
saturated/wet soil

Approach founded in channel bank soils, fill tapering to
zero at ground surface; fill and underlying soils have
experienced drying
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PAVEMENT DISTRESS

- Typically localized distress; commonly associated with poor
subgrade drainage; transitions between graded areas or
periods/techniques of construction; and with utilities where
compaction uniformity is difficult to achieve.

- May be expansive soil component, but not necessarily due to it.
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Not Seeing:

 Damaged well casings (which would suggest
changes in thickness of aquifers)

 Differential vertical offset between wellheads and
adjacent ground surface (which would suggest
changes in thickness of aquifers)

e Basin-scale changes in benchmark elevations, or
changes in gradient/flow capacity along
canals/flood control channels (which would
suggest long-wavelength subsidence

e Significant distress away from areas of historical
marshland/channels and expansive soil
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CONCLUSIONS

Of the three potentially contributing processes to surface ground movements, expansive soil
movement by far the greatest in magnitude.

Geology, soils, and groundwater data, together with unprecedented drought, yield consistent
picture with respect to observed movements.

Types and localities of observed distress are strongly associated with areas of expansive soils,
and historical creek/marsh settings.

Impact of drought conditions (reduced precipitation) is compounded by reduced irrigation.

Valley soils are drying more severely, and to greater depths, than ever before experienced since
the area was settled.

Groundwater system has been managed and monitored to stay above historic lows (observed in
th(te) 1360'5, 1977, or 1987-1992 droughts). No patterns of observations suggest inelastic
subsidence.

Elastic movement is basin-wide in scale, quite small.
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