Leads and Copper Rule

The rule is applicable to Zone 7's direct customers only. For the CDPH-approved Compliance Monitoring Plan, the 5th and 9th rounds of sampling were conducted on June 21, 2009 and December 17, 2009 respectively, and the data is summarized below:

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>No. of samples collected</th>
<th>IHA Favourable Level (.ug/L)</th>
<th>Number of sites exceeding IHA</th>
<th>Action level (ug/L)</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ug/L)</td>
<td>17</td>
<td>4</td>
<td>None</td>
<td>15</td>
<td>0.2</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>17</td>
<td>25</td>
<td>None</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>Lead (ug/L)</td>
<td>24</td>
<td>4</td>
<td>None</td>
<td>15</td>
<td>0.2</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>24</td>
<td>27</td>
<td>None</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>

The VA Medical Center installed lead-removal filters on all of its drinking fountains, and the fiber effectiveness is evident in the monitoring data.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Additional information is available from your local health department, the USEPA’s Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

Initial Distribution System Evaluation

Initial Distribution System Evaluation (IDSE) was a requirement to comply with the EPA Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR). The intent of IDSE was to characterize disinfection byproducts (DBPs) levels in the distribution system and identify locations to monitor DBPs for Stage 2 DBPR compliance. The Stage 2 DBPR bases total trihalomethanes (TTHMs) and haloacetic acids (HAAs) compliance on a locational running annual average (LRAA), calculated at each monitoring location. Following EPA guidelines, 4 IDSE sample locations were identified for 4 consecutive quarterly monitorings. Monitoring was initiated in the 2nd quarter of 2008 and the LRAA was calculated.

Monitoring data is summarized below:

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Concentration (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/13/08</td>
<td>Cu: 17, 25, 24, 21</td>
</tr>
<tr>
<td>8/13/08</td>
<td>Cu: 17, 25, 24, 21</td>
</tr>
<tr>
<td>11/18/08</td>
<td>Cu: 17, 25, 24, 21</td>
</tr>
<tr>
<td>2/18/09</td>
<td>Cu: 17, 25, 24, 21</td>
</tr>
</tbody>
</table>

TTHMs include: Chloroform, Bromodichloromethane, Dibromochloromethane, and Bromoform.

HAAs include: Monochloroacetic acid, Dichloroacetic acid, Trichloroacetic acid, Bromoacetic acid, and Dobromoacetic acid.

Contaminant No. of samples collected | IHA Favourable Level | Number of sites exceeding IHA | Action level (ug/L) | FPR |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ug/L)</td>
<td>17</td>
<td>4</td>
<td>None</td>
<td>15</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>17</td>
<td>25</td>
<td>None</td>
<td>350</td>
</tr>
<tr>
<td>Lead (ug/L)</td>
<td>24</td>
<td>4</td>
<td>None</td>
<td>15</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>24</td>
<td>27</td>
<td>None</td>
<td>350</td>
</tr>
</tbody>
</table>

The USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

The VA Medical Center installed lead-removal filters on all of its drinking fountains, and the fiber effectiveness is evident in the monitoring data.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).
About Water Quality

Addressing Groundwater Hardness

The Mochi Groundwater Demineralization Plant went into operation in late summer 2009. It is intended to draw down the level of solids and minerals in our groundwater basin and to reduce the hardness of groundwater delivered primarily to the western side of Zone 7’s service area.

Source-Water Assessment

We employ many techniques, including surveys and water-quality monitoring programs, to assess source-water quality and monitor potential contaminating activities. Source-water assessments have been completed for all of Zone 7’s groundwater basins. Meanwhile, a State Water Project survey is conducted every five years, and the most recent update was completed in June 2008. Similarly, the final report for a South Bay Aqueduct (SBAC) water-chemistry study was completed in 2008.

Most of the contaminants detected in the SBA water supply originate in the “Narrows and the Delta” location within the Delta, and the Delta. These contaminants can come from agricultural drainage, wastewater treatment plant discharges, urban runoff, recreational activities, and wastewater intrusion. After leaving the Delta, the quality of SBA water may also be affected by local pollution from agricultural drainage, swimming, fishing, and recreational activities, and recreational watersheds in the Bethany and Del Valle reservoirs.

An ongoing seasonal challenge with SBA water is algal growth that can cause taste and odor complaints from customers. Control strategies include periodic copper sulfate application to source water by the Water Plant Operators. Zone 7’s target completion of the source water treatment plant discharges, urban runoff, recreational activities, and it can pick up substances resulting from the presence of animals or livestock operations, and wildlife.

WHERE DO CONTAMINANTS COME FROM?

Terms Used

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

What’s in Your Water?

The table at right shows the concentration levels of each detected contaminant. Sites with exceedances are noted with a blue background.

There are some contaminants that may be temporarily included, including:

- NITRATE
- A compound that is formed by nitrogen fixation and, once the root tissue, combines with other minerals to form nitrates, which are then used by plants. It can be beneficial to plants, but excessive levels can be harmful.
- SODIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- MAGNESIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CALCIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CHLORINE
- A compound that is used as a disinfectant in water treatment to kill bacteria and viruses. It can also react with other substances to form byproducts, such as THMs (trihalomethanes) and HAAs (haloacetic acids). Excessive levels of chlorine can be harmful.
- NITRATES
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- NITROGEN
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- PHOSPHATE
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- TCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- TPH
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- BTEX
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- 2-MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHENE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHANE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PROXIMATE SOURCES OF DETECTED CONTAMINANTS

WHERE DO CONTAMINANTS COME FROM?

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

What’s in Your Water?

The table at right shows the concentration levels of each detected contaminant. Sites with exceedances are noted with a blue background.

There are some contaminants that may be temporarily included, including:

- NITRATE
- A compound that is formed by nitrogen fixation and, once the root tissue, combines with other minerals to form nitrates, which are then used by plants. It can be beneficial to plants, but excessive levels can be harmful.
- SODIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- MAGNESIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CALCIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CHLORINE
- A compound that is used as a disinfectant in water treatment to kill bacteria and viruses. It can also react with other substances to form byproducts, such as THMs (trihalomethanes) and HAAs (haloacetic acids). Excessive levels of chlorine can be harmful.
- NITRATES
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- NITROGEN
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- PHOSPHATE
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- TCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- TPH
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- BTEX
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- 2-MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHENE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHANE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PROXIMATE SOURCES OF DETECTED CONTAMINANTS

WHERE DO CONTAMINANTS COME FROM?

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

What’s in Your Water?

The table at right shows the concentration levels of each detected contaminant. Sites with exceedances are noted with a blue background.

There are some contaminants that may be temporarily included, including:

- NITRATE
- A compound that is formed by nitrogen fixation and, once the root tissue, combines with other minerals to form nitrates, which are then used by plants. It can be beneficial to plants, but excessive levels can be harmful.
- SODIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- MAGNESIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CALCIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CHLORINE
- A compound that is used as a disinfectant in water treatment to kill bacteria and viruses. It can also react with other substances to form byproducts, such as THMs (trihalomethanes) and HAAs (haloacetic acids). Excessive levels of chlorine can be harmful.
- NITRATES
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- NITROGEN
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- PHOSPHATE
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- TCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- TPH
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- BTEX
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- 2-MIB
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHENE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- ETHANE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PROXIMATE SOURCES OF DETECTED CONTAMINANTS

WHERE DO CONTAMINANTS COME FROM?

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

Water Quality

The concentration of a contaminant in which, if exceeded, triggers a treatment requirement that a water system must follow.

What’s in Your Water?

The table at right shows the concentration levels of each detected contaminant. Sites with exceedances are noted with a blue background.

There are some contaminants that may be temporarily included, including:

- NITRATE
- A compound that is formed by nitrogen fixation and, once the root tissue, combines with other minerals to form nitrates, which are then used by plants. It can be beneficial to plants, but excessive levels can be harmful.
- SODIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- MAGNESIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CALCIUM
- A mineral that is required for proper body function, but excessive levels can be harmful.
- CHLORINE
- A compound that is used as a disinfectant in water treatment to kill bacteria and viruses. It can also react with other substances to form byproducts, such as THMs (trihalomethanes) and HAAs (haloacetic acids). Excessive levels of chlorine can be harmful.
- NITRATES
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- NITROGEN
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- PHOSPHATE
- A compound that is used as a fertilizer in agriculture. It can be harmful to babies, but excessive levels can be harmful.
- TCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- TPH
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
- PCE
- A compound that is used as a solvent in various industries. It can be harmful to the environment, but excessive levels can be harmful.
About Water Quality

Addressing Groundwater Hardness

The Mochi Groundwater Demineralization Plant went into operation in late summer 2009. It is intended to reduce hardness in the drinking water delivered to Zone 7's western service area.

Source Water Assessment

We employ many techniques, including surveys and water-quality monitoring programs, to assess source-water quality and monitor continual contaminants activities. Source-water assessments have been completed for all of Zone 7's groundwater wells. Meanwhile, a State Water Project survey is conducted every five years, and the most recent update was completed in June 2008. Similarly, the final report for a South Bay Aqueduct (SBW) water quality study was completed in 2009.

Most of the contaminants detected in the SBA water supply originate in the San Joaquin and Sacramento-San Francisco basins. These contaminants can come from agricultural drainage, wastewater treatment or discharge, urban runoff, increased activities, and wastewater introduction. After leaving the Delta, the quality of SBA water may also be affected by water, power, fertilizer, grain, similar activities, and recreational activities in the watersheds of the Bethany and DeLaVeille reservoirs.

An ongoing seasonal challenge with SBA water is its algal growth that can cause taste and odor complaints from customers. Control strategies include periodic copper sulphate applications to source water by the Department of Water Resources and use of Ponderosa-Clarified Carbon in Bethany and DeLaVeille reservoirs. In 2009, Zone 7 completed the evaluation of the use of ozone or ozone-bleach to generate ozone from ozonation, ozonation, and ozonation and secondary ozonation in the water treatment plant. MCLGs do not reflect the benefits of the use of ozone to Better monitoring control microbial contaminants.

PUBLIC HEALTH GOALS (PHGs)
The level of a specific contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

TREATMENT TECHNIQUE (TT)
A process or procedure designed to reduce the level of a contaminant in drinking water.

TOTAL ORGANIC CARBON (TOC)
A measure of water that is not reduced or oxidized, including synthetic and naturally occurring organic matter.

What's in Your Water?

Terms Used

MCL (Maximum Contaminant Level)
The highest level of a contaminant that is allowed in drinking water. Primarily established to protect public health. The MCLs set by the Public Health Goals (PHGs) are designed to ensure public health safety.

MCLG (Maximum Contaminant Level Goal)
The highest level of a contaminant that is allowed in drinking water to protect public health. The MCLGs are set by the California Environmental Protection Agency.

MDL (Method Detection Limit)
The highest level of a contaminant that can be reliably detected with a given analytical procedure.

MDL (Method Detection Limit)
The highest level of a contaminant that can be reliably detected with a given analytical procedure.

What's in Your Water?

The Site-specific right-to-know program made it easy to get site-specific data on contaminants. Right to know is in the best interest of health and safety.

MDLs are set by the National Environmental Policy Statement. The MDLs are set by the California Environmental Protection Agency. The MDLs are set by the California Environmental Protection Agency. There are site-specific values in the program that may be specifically included in the site-specific data.

MDLs are set by the National Environmental Policy Statement. The MDLs are set by the California Environmental Protection Agency. The MDLs are set by the California Environmental Protection Agency. There are site-specific values in the program that may be specifically included in the site-specific data.

The Site-specific right-to-know program made it easy to get site-specific data on contaminants. Right to know is in the best interest of health and safety.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

The Site-specific right-to-know program made it easy to get site-specific data on contaminants. Right to know is in the best interest of health and safety.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.

Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. Mary is a resident of the Oakmont neighborhood. The MCLs are set by the National Environmental Policy Statement. There are site-specific values in the program that may be specifically included in the site-specific data.
The USEPA Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

- Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested and/or flush your tap from 30 seconds to 2 minutes before using tap water. Additional information is available from the VA Medical Center installed lead-removal filters on all of its drinking fountains, and the filter effectiveness is evident in the monitoring data.

- Contaminant No. of Samples
- Copper (ug/L) 24 4 None 15 0.2
- Lead (ug/L) 24 4 None 15 0.2

- In wet years, we store surplus State Water Project supplies from the State Water Project. Traditionally, water in the aquifer comes from local rainfall and from the aquifer that underlies the Livermore-Amador Valley; water in the South Bay Aqueduct is treated either at the Patterson Pass Treatment Plant, the Patterson Pass Ultrafiltration Water Treatment Plant, or at the Del Valle Water Treatment Plant. Because of the Del Valle plant’s physical location, its water supply source can be from the USA, Del Valle Reservoir, or a blend of the two.

- Zone 7 applies a multi-barrier approach to treat and remove pollutants, and the water is then disinfected using chlorination to minimize microbial risks. Groundwater is simply chlorinated to maintain a consistent residual disinfectant throughout the distribution system.

- This rule is applicable to Zone 7’s direct customers only. Per the CDPH-approved Compliance Monitoring Plan, the 5th Concentration in ug/L is listed below:

- Copper (ug/L) 24 4 None 15 0.2
- Lead (ug/L) 24 4 None 15 0.2

- TTHMs include: Chloroform, Bromodichloromethane, Dibromochloromethane, and Bromoform.
- HAAs include: Monochloroacetic acid, Dichloroacetic acid, Trichloroacetic acid, Bromoacetic acid, and Dobromoacetic acid.

- Zone 7 Water Agency provides treated drinking water to four major water retailers, along with a small number of direct customers, serving nearly 200,000 people in Pleasanton, Livermore, Dublin, and the Dubliner Valley area of San Ramon. We also provide untreated irrigation water to some local agricultural operations and provide flood protection to all of eastern Alameda County.

- Where Does Your Water Come From?

- Our Primary Water Sources:

- Local Surface Water

- Local Groundwater

- Some people may be more vulnerable to contaminates in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminates are available from the Safe Drinking Water Hotline (1-800-426-4791).

- Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency’s (USEPA) Safe Drinking Water Hotline (1-800-426-4791).
Lead and Copper Rule

This rule is applicable to Zone 7’s direct customers only. For the CPDR approved Compliance Monitoring Plan, the 5th and 6th rounds of sampling were conducted on June 25, 2009 and December 17, 2009 respectively, and the data is summarized below:

<table>
<thead>
<tr>
<th>Concentrate</th>
<th>No. of samples Collected</th>
<th>IMS Favorable Level (ug/L)</th>
<th>Number of IMS Exceeding IL</th>
<th>Active Level (ug/L)</th>
<th>FRGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ug/L)</td>
<td>17</td>
<td>0.05</td>
<td>15</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>17</td>
<td>2.0</td>
<td>25</td>
<td>New</td>
<td>360</td>
</tr>
<tr>
<td>Lead (ug/L)</td>
<td>24</td>
<td>0.05</td>
<td>15</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Copper (ug/L)</td>
<td>24</td>
<td>0.5</td>
<td>25</td>
<td>New</td>
<td>360</td>
</tr>
</tbody>
</table>

Copper and lead levels in the monitoring data indicated for 4 consecutive quarterly monitorings. Monitoring was initiated in the 2nd quarter of 2008 and the data is summarized below:

- Copper levels: The maximum level of copper in the distribution system was 2.2 mg/L.
- Lead levels: The maximum level of lead in the distribution system was 0.1 mg/L.

The VA Medical Center installed lead-removal filters on all of its drinking fountains, and the filter effectiveness is evident in the monitoring data.

Initial Distribution System Evaluation

Initial Distribution System Evaluation (IDSE) is a requirement to comply with the EPA Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR). The intent of IDSE was to characterize disinfection byproducts (DBPs) levels in the distribution system and identify locations to monitor DBPs for Stage 2 DBPR compliance. The Stage 2 DBPR bases total trihalomethanes (TTHMs) and haloacetic acids (HAAs) compliance on a locational running annual 10th-90th percentile.

- TTHMs: The maximum level of TTHMs in the distribution system was 0.7 mg/L.
- HAAs: The maximum level of HAAs in the distribution system was 0.5 mg/L.

Other Measures

- Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk.
- Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Where Does Your Water Come From?

Zone 7 Water Agency provides treated drinking water to four major water retailers, along with a small number of direct customers, serving nearly 200,000 people in Pleasanton, Livermore, Dublin and the Dougherty Valley area of San Ramon. We also provide untreated irrigation water to some local agricultural operations and provide flood protection to all of eastern Alameda County.

- Local Surface Water: This is comprised of local rain runoff stored in Old Valley Reservoir and elsewhere for State Water Project water use.
- Local Groundwater: This supply is pumped from Zone 7 aquifers that underlie the Livermore-Amador Valley. Water in the aquifers comes from local rainfall and from the State Water Project.

Edocket Information

This Report Contains Important Information About Your Drinking Water. Translate it, or speak with someone who understands it.

Zone 7 Water Agency

Educational Information

- Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Our Primary Water Sources:

- Imported Surface Water: More than three-quarters of our water supply originates as Sierra Nevada snowmelt and is conveyed by imported surface water the State Water Project via the Delta, and then through the State Water Project water treatment facilities. The Delta, and then through the Delta.
- Local Surface Water: This is comprised of local rain runoff stored in Old Valley Reservoir and elsewhere for State Water Project water use.
- Local Groundwater: This supply is pumped from Zone 7 aquifers that underlie the Livermore-Amador Valley. Water in the aquifers comes from local rainfall and from the State Water Project.

Water Treatment

State Water Project water conveyed through the Delta, and then through the South Bay Aqueduct is treated either at the Patterson Pass Conventional Water Treatment Plant, the Patterson Pass Ultrafiltration Water Treatment Plant, or the Del Valle Water Treatment Plant. Because of the Del Valle plant’s physical location, its water supply source can be from the Old Valley Reservoir, or a blend of the two.

Zone 7 applies a multi-barrier approach to treat and remove pollutants, and the water is then disinfected using chloramination to minimize microbial risks. Groundwater is simply chlorinated to maintain a consistent residual disinfectant throughout the distribution system.