

Zone 7 Water Agency 100 North Canyons Parkway, Livermore, CA 94551 (925) 454-5000

# Annual Report for the Sustainable Groundwater Management Program 2020 Water Year

# **Livermore Valley Groundwater Basin**



# Annual Report for the Livermore Valley Groundwater Basin Sustainable Groundwater Management Program 2020 Year (October 2019 – September 2020) Livermore Valley Groundwater Basin

ZONE 7 WATER AGENCY

100 North Canyons Parkway

Livermore, CA 94551

(925) 454-5000

#### **PREPARED BY:**

#### **ZONE 7 WATER AGENCY STAFF**

#### **Authors:**

Ryan Gromer – Water Resources Technician Michelle Parent – Water Resources Technician Tom Rooze, P.G., C.E.G. – Associate Geologist Andrew Reyna – Water Resources Technician Colleen Winey, P.G. – Associate Geologist

#### **Contributors:**

Allison Cleary – Water Resources Technician Carol Mahoney, P.G, C.H.G. – Integrated Water Resources Manager Sal Segura, P.E. – Associate Engineer

# **Table of Contents**

| Technical Report Sections |                                                |     |
|---------------------------|------------------------------------------------|-----|
| ES.1 Introduction         |                                                | 1   |
| ES.2                      | 2020 Groundwater Conditions Overview           | 9   |
| ES.2.1.                   | Overview 9                                     |     |
| ES.2.2.                   | Surface Water – Groundwater Interaction        | 11  |
| ES.2.3.                   | Groundwater Levels                             | 11  |
| ES.2.4.                   | Groundwater Quality                            | 12  |
| ES.2.5.                   | Subsidence                                     | 14  |
| ES.2.6.                   | Groundwater Storage                            | 14  |
| ES.3                      | Project and Management Action Overview         | 15  |
| ES.3.1.                   | Groundwater Supply Sustainability              |     |
|                           | Water Quality Sustainability                   |     |
| 1                         | Agency and Basin Information                   |     |
| 1.1                       | Introduction                                   |     |
| 1.2                       | Basin Management                               | 1-2 |
| 1.3                       | Zone 7 Service Area                            |     |
| 1.4                       | Zone 7 Programs                                |     |
| 1.5                       | Groundwater Management Ordinances and Policies |     |
| 1.6                       | Plan Area                                      |     |
| 1.7                       | Basin and Hydrogeologic Setting                |     |
| 1.7                       | , , , , ,                                      |     |
| 1.7                       |                                                |     |
| 1.7                       | 7.3 Fringe Management Areas and Subareas       | 1-7 |
| 1.7                       | .4 Upland Management Areas                     | 1-7 |
| 1.8                       | Aquifer Zones                                  | 1-8 |
| 1.8                       | Introduction                                   | 1-8 |
| 1.8                       | .2 Upper Aquifer Zone                          | 1-8 |
| 1.8                       | Lower Aquifer Zone                             | 1-8 |
| 1.9                       | Groundwater Characteristics                    | 1-8 |
| 1.10                      | Monitoring Networks and Modeling               | 1-9 |
| 2                         | Precipitation and Evaporation                  | 2-1 |
| 2.1                       | Program Description                            | 2-1 |
| 2.1                       | 1 Monitoring Network                           | 2-1 |

i

|   | 2.1.2          | Program Changes for the Water Year      | 2-1 |
|---|----------------|-----------------------------------------|-----|
|   | 2.2 Results f  | or the 2020 Water Year                  | 2-2 |
| 3 | Surface \      | Water                                   | 3-1 |
|   | 3.1 Program    | Description                             | 3-1 |
|   | 3.1.1          | Monitoring Network                      |     |
|   | 3.1.2          | Program Changes for the Water Year      |     |
|   | 3.2 Results fe | or the 2020 Water Year                  |     |
|   | 3.2.1          | Introduction                            |     |
|   | 3.2.2          | Arroyo Valle                            |     |
|   | 3.2.3          | Arroyo Mocho                            |     |
|   | 3.2.4          | Arroyo Las Positas                      |     |
|   | 3.2.5          | Arroyo de la Laguna                     | 3-3 |
| 4 | Mining A       | Area                                    | 4-1 |
|   | 4.1 Program    | Description                             | 4-1 |
|   | 4.1.1          | Monitoring Network                      | 4-1 |
|   | 4.1.2          | Program Changes for the Water Year      | 4-1 |
|   | 4.2 Results f  | or the 2020 Water Year                  | 4-2 |
|   | 4.2.1          | Water Elevations                        | 4-2 |
|   | 4.2.2          | Water Quality                           | 4-2 |
|   | 4.2.3          | Mining Activities and Water Budget      | 4-2 |
| 5 | Surface \      | Water-Groundwater Interaction           | 5-1 |
|   | 5.1 Program    | Description                             | 5-1 |
|   | 5.1.1          | Monitoring Network                      | 5-1 |
|   | 5.1.2          | Program Changes for the Water Year      | 5-1 |
|   | 5.2 Results f  | or the 2020 WY                          | 5-2 |
| 6 | Groundy        | vater Elevations                        | 6-1 |
|   | 6.1 Program    | Description                             | 6-1 |
|   | 6.1.1          | Monitoring Network                      | 6-1 |
|   | 6.1.2          | Program Changes for the 2020 Water Year | 6-2 |
|   | 6.2 Results f  | or the 2020 Water Year                  | 6-2 |
|   | 6.2.1          | Overview                                |     |
|   | 6.2.2          | Upper Aquifer Levels                    |     |
|   | 6.2.3          | Lower Aquifer Levels                    | 6-4 |
| 7 | Groundy        | water Quality                           | 7-1 |
|   | 3              | Description                             |     |
|   | 7.1.1          | Monitoring Network                      |     |
|   | 7.1.2          | Constituents of Concern                 |     |
|   | 7.1.3          | Program Changes for the Water Year      |     |
|   | •              | or the 2020 Water Year                  |     |
|   | 7.2.1          | Introduction                            |     |
|   | 7.2.2          | Total Dissolved Solids                  |     |
|   | 7.2.3          | Nitrates                                | 7-5 |

| 7.   | .2.4    | Boron                                          | 7-7  |
|------|---------|------------------------------------------------|------|
| 7.   | .2.5    | Chromium                                       |      |
| 7.   | .2.6    | PFAS                                           | 7-10 |
| 8    | Land Su | urface Elevation                               | 8-1  |
| 8.1  | Prograi | m Description                                  | 8-1  |
|      | .1.1    | Monitoring Network                             |      |
| 8.   | .1.2    | Program Changes for the 2020 Water Year        | 8-1  |
| 8.2  | Results | for the 2020 Water Year                        | 8-2  |
| 9    | Land U  | se                                             | 9-1  |
| 9.1  | Prograi | m Description                                  | 9-1  |
| 9.   | .1.1    | Monitoring Network                             |      |
| 9.   | .1.2    | Program Changes for the Water Year             | 9-1  |
| 9.2  | Results | for the 2020 Water Year                        | 9-1  |
| 10   | Waste   | water and Recycled Water                       | 10-1 |
| 10.1 | Prograi | m Description                                  | 10-1 |
| 10   | 0.1.1   | Monitoring Network                             | 10-1 |
| 10   | 0.1.2   | Program Changes for the Water Year             | 10-1 |
| 10.2 | Results | for the 2020 Water Year                        | 10-1 |
| 10   | 0.2.1   | Wastewater and Recycled Water Volumes          | 10-1 |
| 10   | 0.2.2   | Wastewater and Recycled Water Quality          | 10-3 |
| 11   | Ground  | dwater Storage                                 | 11-1 |
| 11.1 | Ground  | lwater Storage Calculations                    | 11-1 |
|      | 1.1.1   | Groundwater Storage Threshold                  |      |
|      | 1.1.2   | Calculation Methods                            |      |
|      | 1.1.3   | Groundwater Elevation Results                  |      |
|      | 1.1.4   | Hydrologic Inventory Results                   |      |
| 1:   | 1.1.5   | Total Storage                                  | 11-3 |
| 11.2 |         | lwater Budget                                  |      |
|      | 1.2.1   | Budget Categories                              |      |
|      | 1.2.2   | Natural Recharge and Demand                    |      |
|      | 1.2.3   | Artificial Recharge and Demand—Conjunctive Use |      |
| 12   |         | dwater Supply Sustainability                   |      |
| 12.1 | Introdu | ıction                                         | 12-1 |
| 12.2 | Import  | of Surface Water                               | 12-1 |
| 12.3 | Valley- | Wide Water Production and Use                  | 12-2 |
| 12.4 | Future  | Supply Reliability                             | 12-4 |
| 12.5 | Water   | Conservation                                   | 12-5 |
| 12.6 | Chain d | of Lakes Recharge Projects                     | 12-6 |
| 12.7 | Well M  | laster Plan                                    | 12-7 |
| 12.8 | Sustain | able Groundwater Management Ordinance          | 12-8 |

| -                             | 12.9 Existing and Future Recycled Water Use |                                  | 12-8  |
|-------------------------------|---------------------------------------------|----------------------------------|-------|
| 13 Water Quality Sustainabili |                                             | Water Quality Sustainability     | 13-1  |
| <u>.</u>                      | 13.1                                        | Introduction                     | 13-1  |
| -                             | 13.2                                        | Well Ordinance Program           | 13-1  |
| -                             | 13.3                                        | Toxic Site Surveillance Program  | 13-2  |
|                               | 13.3                                        |                                  | 13-2  |
|                               | 13.3                                        | 3.2 Active Cases                 | 13-3  |
|                               | 13.3                                        | 3.3 Case Closures                | 13-3  |
|                               | 13.3                                        | 3.4 Sites Pending Closure Review | 13-4  |
|                               | 13.3                                        | 3.5 New Cases                    | 13-6  |
| -                             | 13.4                                        | Salt Management                  | 13-6  |
|                               | 13.4                                        | 4.1 Introduction and Strategy    | 13-6  |
|                               | 13.4                                        | 4.2 Salt Management for 2020 WY  | 13-7  |
| _                             | 13.5                                        | Nutrient Management              | 13-9  |
|                               | 13.5                                        | 5.1 Introduction                 | 13-9  |
|                               | 13.5                                        | 5.2 Nutrient Management Plan     | 13-10 |
|                               | 13.5                                        | 5.3 OWTS Management              | 13-10 |
| 14                            |                                             | References                       | 14-1  |

#### **List of Figures and Tables**

| In Text                                                                              | Page           |
|--------------------------------------------------------------------------------------|----------------|
| Table ES-A: Location of Required Items in the Sustainable Groundwater Management Pro | gram           |
| Annual Report                                                                        | ES-3           |
| Table ES-B: Summary of Sustainability Indicators and 2020 WY Status                  | ES-10          |
| Figure ES-A: Livermore Valley Groundwater Basin                                      | ES-2           |
| Figure ES-B: Bernal Key Well Hydrograph                                              | ES-9           |
| Table 1-A: Basin Management Areas                                                    | 1-6            |
| Table 4-A: Estimated Groundwater Transfer and Losses in Mining Area (AF)             | 4-3            |
| Table 6-A: Table of Key and CASGEM Wells for the 2020 Water Year                     | 6-2            |
| Table 6-B: Program Wells Changes during the 2020 Water Year                          | 6-2            |
| Table 6-C: Groundwater Elevation Change in Key & CASGEM Wells from Fall 2019 to Fall | 6-3            |
| Table 7-A: Regulatory Limits for PFAS Compounds (in ppt)                             | 7-2            |
| Table 7-B: Program Wells Changes during the Water Year                               | 7-2            |
| Table 10-A: Municipal Wastewater and Recycled Water Volumes (AF) for the 2020        | 10-2           |
| Table 10-B: Other Wastewater Volumes (AF) for the 2020 Water Year                    | 10-3           |
| Table 10-C: Salt Loading from Applied Recycled Water and Wastewater for 2020 WY      | 10-3           |
| Table 10-D: Nitrogen Loading from Applied Recycled Water and Wastewater for the 2020 | ) WY           |
|                                                                                      | 10-4           |
| Table 11-A: HI Method Groundwater Storage Supply and Demand Volumes, 2020 WY (AF     | -              |
| Table 11-B: Groundwater Storage Summary, 2020 WY (in Thousand AF)                    | 11-3           |
| Table 11-C: Natural Groundwater Inflow and Demand, 2020 WY                           | 11-5           |
| Table 11-D: Retailer Groundwater Pumping and Quotas in 2020 Calendar Year (AF)       | 11-5           |
| Table 11-E: Conjunctive Use Supply and Demand, 2020                                  | 11-6           |
| Table 12-A: Imported Water Sources for the 2020 Calendar Year                        | 12-2           |
| Figure 12-A: Valley-Wide Water Production for the 2020 Water Year (AF)               | 12-3           |
| Table 13-A: Well Ordinance Permits Issued in the 2020 Water Year                     | 13-2           |
| Table 13-B: Salt Loading Summary for 2020 WY                                         | 13-8           |
| Table 13-C: Salts Removed by Zone 7's Mocho Groundwater Demineralization Plant Oper  | ations<br>13-9 |
|                                                                                      |                |

#### **Attached**

Figure 1-1: Map of Groundwater Basins within Zone 7 Service Area Figure 1-2: Location of Service Area, Retailers and Major Streams

- Table 2-1: Table of Climatological Stations, 2020 Water Year
- Table 2-2: Monthly Precipitation Data, 2020 Water Year
- Table 2-3: Historical Monthly Precipitation, Monitoring Station 15E, 1871 to 2020 Water Years
- Table 2-4: Monthly Evapotranspiration Data, 2020 Water Year
- Table 2-5: Historical Monthly Pan Evaporation, Monitoring Station Lake del Valle, 1969 to 2020 Water Years
- Figure 2-1: Climatological Monitoring Stations with Average Rainfall
- Figure 2-2: Graph of Livermore Rainfall
- Table 3-1: Table of Surface Water Monitoring Stations and Monitoring Frequencies, 2020 Water Year
- Table 3-2: Monthly Streamflows, Recorder Stations, 2020 Water Year
- Table 3-3: Table of Surface Water Quality Results, 2020 Water Year
- Figure 3-1: Map of Surface Water Sites, 2020 Water Year
- Table 4-1: SemiAnnual Water Levels in Mining Area Ponds, 2020 Water Year
- Table 4-2: Water Quality Results for Mining Area Water Samples, 2020 Water Year
- Figure 4-1: Map of Gravel Mining Pits
- Figure 5-1: Hydrographs in the Vicinity of the Alkali Sink & Springtown Springs
- Table 6-1: Groundwater Elevation Program Wells and Respective Monitoring Frequency
- Table 6-2: Well Construction Details
- Table 6-3: Table of Semiannual Groundwater Levels, Fall 2019 To Fall 2020
- Figure 6-1: Map of Wells in 2020 Groundwater Elevation Program
- Figure 6-2: Map of 2020 Key and CASGEM Wells
- Figure 6-3: Historical Key Well Hydrographs, 1901 to 2020 Water Years
- Figure 6-4: Groundwater Gradient Map, Upper Aquifer, Spring 2020 WY
- Figure 6-5: Groundwater Gradient Map, Upper Aquifer, Fall 2020 WY
- Figure 6-6: Change in Groundwater Elevation, Upper Aquifer, Fall 2019 WY to Fall 2020 WY
- Figure 6-7: Depth to Groundwater, Upper Aquifer, Fall 2020 WY
- Figure 6-8: Groundwater Gradient Map, Lower Aquifer, Spring 2020 WY
- Figure 6-9: Groundwater Gradient Map, Lower Aquifer, Fall 2020 WY
- Figure 6-10: Change in Groundwater Elevation, Lower Aquifer, Fall 2019 WY to Fall 2020 WY
- Figure 6-11: Map of Groundwater Levels Above Historical Lows, Lower Aquifer, Fall 2020 WY
- Table 7-1: Groundwater Quality Program Wells with Sampling Frequency
- Table 7-2: Table of Water Quality Results for Metals and Minerals, 2020 Water Year
- Table 7-3: Table of Water Quality Results for PFAS, 2020 Water Year
- Figure 7-1: Map of Wells in 2018 Groundwater Quality Program
- Figure 7-2: Graphs of TDS Concentrations in Key Wells, 1974 to 2020 Water Years
- Figure 7-3: Map of TDS Concentrations; Upper Aquifer; 2020 Water Year
- Figure 7-4: Map of TDS Concentrations; Lower Aquifer; 2020 Water Year

- Figure 7-5: Map of Nitrate Concentrations; Upper Aquifer; 2020 Water Year
- Figure 7-6: Map of Nitrate Concentrations; Lower Aquifer; 2020 Water Year
- Figure 7-7: Map of Boron Concentrations; Upper Aquifer; 2020 Water Year
- Figure 7-8: Map of Boron Concentrations; Lower Aquifer; 2020 Water Year
- Figure 7-9: Map of Total Chromium Concentrations; Upper Aquifer; 2020 Water Year
- Figure 7-10: Map of Total Chromium Concentrations; Lower Aquifer; 2020 Water Year
- Figure 7-11: Map of PFOS Concentrations; Upper Aquifer; 2020 Water Year
- Figure 7-12: Map of PFOS Concentrations; Lower Aquifer; 2020 Water Year
- Figure 7-13: Hydro-Chemo Graph for 3S/1E 18A 6 (Hopyard 6), Bernal Subarea, Lower Aquifer
- Figure 7-14: Hydro-Chemo Graph for 3S/1E 9M 3 (Mocho 2), Amador West Subarea, Lower Aquifer
- Figure 7-15: Hydro-Chemo Graph for 3S/2E 7P 3), Amador East Subarea, Lower Aquifer
- Figure 7-16: Hydro-Chemo Graph for 3S/2E 8P 1, Mocho II Subarea, Lower Aquifer
- Figure 8-1: Land Surface Deformation from September 2018 to September 2019
- Appendix 8-1: InSAR Analysis of Ground Deformation over Livermore, 2014 December 2019 September
- Table 9-1: Table of Livermore Valley Land Use Acreage
- Figure 9-1: Livermore Valley Land Use, 2020 Water Year
- Figure 10-1: Existing and Planned Future Wastewater and Recycled Water
- Table 11-1: Total Main Basin Storage by Subarea, 1974 to 2020 Water Years
- Table 11-2: Description of Hydrologic Inventory Components
- Table 11-3: Historical Groundwater Storage, Hydrologic Inventory Method, 1974 to 2020 Water Years
- Figure 11-1: Mean Groundwater Elevations by Node, Upper and Lower Aquifers, Fall 2020
- Figure 11-2: Change in Groundwater Storage, Fall 2019 to Fall 2020
- Figure 11-3: Graph of Historical Groundwater Storage, 1974 to 2020 Water Years
- Figure 11-4: Map of Municipal and Private Supply Wells
- Figure 11-5: Main Basin Groundwater Production, 1974 to 2020 Water Years
- Figure 11-6: Graph of Cumulative Conjunctive Use Supply and Demand Since 1974 Water Year
- Figure 12-1: Livermore-Amador Valley Water Supply and Use, 2020 Water Year
- Figure 12-2: Valley Water Production from Imported Water and Groundwater, 1974 to 2020
- Water Years
- Figure 12-3: Future Chain of Lakes

- Table 13-1: Toxic Site Surveillance Active Site Summary, 2020 Water Year
- Table 13-2: Historical Salt Loading, 1974 to 2020 Water Years
- Figure 13-1: Toxic Site Surveillance; Livermore Area Sites
- Figure 13-2: Toxic Site Surveillance; Pleasanton and Sunol Area Sites
- Figure 13-3: Toxic Site Surveillance; Dublin Area Sites
- Figure 13-4: Toxic Site Surveillance; Cases with Status Changes in 2020 Water Year
- Figure 13-5: Graphs of Salt Loading and Concentrations, 1974 to 2020 Water Years

# **Acronyms and Abbreviations**

| Abbrev   | Description                                                                  | Abbrev          | Description                                        |
|----------|------------------------------------------------------------------------------|-----------------|----------------------------------------------------|
| μg/L     | Micrograms per liter                                                         | DWR             | California Department of Water Resources           |
| ACCDA    | Alameda County Community Development<br>Agency                               | EBMUD           | East Bay Municipal Utilities District              |
| ACDEH    | Alameda County Department of<br>Environmental Health                         | EBRPD           | East Bay Regional Parks District                   |
| ACNP     | Alamo Canal near Pleasanton                                                  | EIR             | Environmental Impact Report                        |
| ADLLV    | Arroyo de la Laguna at Verona                                                | EPA             | Environmental Protection Agency                    |
| ADVP     | Arroyo Del Valle Pleasanton                                                  | ESL             | Environmental screening level                      |
| AF       | Acre-feet                                                                    | ЕТо             | Evapotranspiration                                 |
| AF/yr    | Acre-feet per year                                                           | ft              | Feet                                               |
| ALP      | Arroyo Las Positas                                                           | GDE             | Groundwater-dependent ecosystem                    |
| ALP_ELCH | Arroyo Las Positas above El Charro                                           | GIS             | Geographic information system                      |
| ALPL     | Arroyo Las Positas near Livermore                                            | GPQ             | Groundwater Pumping Quota                          |
| ALTC     | Altamont Creek                                                               | GSA             | Groundwater Sustainability Agency                  |
| AMHAG    | Arroyo Mocho Hageman                                                         | GSP             | Groundwater Sustainability Plan                    |
| AM_KB    | Arroyo Mocho at Kaiser Bridge                                                | GWMP            | Groundwater Management Plan                        |
| AMNL     | Arroyo Mocho near Livermore                                                  | GWE             | Groundwater Elevation                              |
| AMP      | Arroyo Mocho Pleasanton                                                      | HI              | Hydrologic Inventory                               |
| AOC      | Area of Concern                                                              | HRL             | Health reference level                             |
| AVADLL   | Arroyo Valle at Arroyo de la Laguna                                          | InSAR           | Interferometric Synthetic Aperture Radar           |
| AVBLC    | Arroyo Valle below Lang Canyon                                               | ISCO            | In-situ chemical oxidation                         |
| AVNL     | Arroyo Valle near Livermore                                                  | LAMP            | Local Agency Management Program                    |
| BBID     | Byron-Bethany Irrigation District                                            | LAVWMA          | Livermore-Amador Valley Water Management<br>Agency |
| bgs      | Below ground surface                                                         | lbs             | Pounds                                             |
| BMPs     | Best management practices                                                    | LDV             | Lake Del Valle                                     |
| CaCO3    | Calcium carbonate                                                            | LLNL            | Lawrence Livermore National Laboratory             |
| CASGEM   | California Statewide Groundwater Elevation<br>Monitoring                     | LRI             | Livermore Rain Index                               |
| CCNP     | Chabot Canal near Pleasanton                                                 | LTCP            | Low-Threat Underground Storage Tank Closure Policy |
| CCR      | California Code of Regulations                                               | LWRP            | Livermore Water Reclamation Plant                  |
| CEC      | Constituents-of-emerging-concern                                             | MCL             | Maximum contaminant level                          |
| CEQA     | California Environmental Quality Act                                         | mg/L            | Milligrams per liter                               |
| cfs      | Cubic feet per second                                                        | MGDP            | Mocho Groundwater Demineralization Plant           |
| CIMIS    | California Irrigation Management Information System                          | MOU             | Memorandum of Understanding                        |
| CIP      | Capital Improvement Program                                                  | msl             | Mean sea level                                     |
| COLs     | Chain of Lakes                                                               | MTBE            | Methyl tertiary-butyl ether                        |
| Cr       | Chromium                                                                     | N               | Nitrogen                                           |
| CrVI     | Hexavalent chromium                                                          | NC              | North Canyons                                      |
| CWS      | California Water Service                                                     | NL              | Notifications Level                                |
| CY       | Calendar year                                                                | NMP             | Nutrient Management Plan                           |
| DCE      | Dichloroethene                                                               | NO <sub>3</sub> | Nitrate Ion                                        |
| DERWA    | DSRSD-EBMUD Recycled Water Authority                                         | OWTS            | Onsite wastewater treatment system                 |
| DDW      | California State Water Resources Control<br>Board Division of Drinking Water | PCE             | Tetrachloroethylene                                |
| DSRSD    | Dublin San Ramon Services District                                           | PFAS            | Per- and polyfluoroalkyl substances                |
| DTSC     | Department of Toxic Substances Control                                       | PFBS            | Perfluorobutanesulfonic acid                       |
| DVWTP    | Del Valle Water Treatment Plant                                              | PFOA            | Perfluorooctanoic acid                             |

| Abbrev | Description                                     | Abbrev | Description                                 |
|--------|-------------------------------------------------|--------|---------------------------------------------|
| PFOS   | Perfluorooctanesulfonic acid                    | SVE    | Soil vapor extraction                       |
| POTW   | Publicly owned treatment works                  | SWP    | State Water Project                         |
| ppb    | Parts per billion                               | SWRCB  | State Water Resources Control Board         |
| ppt    | Parts per trillion                              | TAF    | Thousand acre-feet                          |
| PPWTP  | Patterson Pass Water Treatment Plant            | TCE    | Trichloroethylene                           |
| PRG    | Preliminary Remediation goals                   | TDS    | Total dissolved solids                      |
| RL     | Response Level                                  | TKN    | Total Kjeldahl nitrogen                     |
| RO     | Reverse osmosis                                 | TSS    | Toxic Sites Surveillance                    |
| RP     | Responsible Party                               | USEPA  | U.S. Environmental Protection Agency        |
| RWQCB  | California Regional Water Quality Control Board | USGS   | U.S. Geological Survey                      |
| SBA    | South Bay Aqueduct                              | VA     | Veteran's Administration                    |
| SGMA   | Sustainable Groundwater Management Act          | WBIC   | Weather-Based Irrigation Controller         |
| SFPUC  | San Francisco Public Utilities Commission       | WMP    | Well Master Plan                            |
| SMP    | Salt Management Plan                            | WWMP   | Wastewater Management Plan                  |
| SMP    | Surface mining permit                           | WY     | Water year (October 1 through September 30) |
| SNMP   | Salt Nutrient Management Plan                   |        |                                             |

# **Executive Summary**

#### **ES.1** Introduction

Alameda County Flood Control and Water Conservation District, Zone 7 (Zone 7 Water Agency or Zone 7) provides water management in the Livermore Valley Groundwater Basin (California Department of Water Resources [DWR] Basin 2-10) as part of its mission to *Deliver safe*, *reliable*, *efficient*, and sustainable water services, and more specifically address Strategic Plan initiatives #7 - Manage as the Groundwater Sustainability Agency (GSA) and implement the groundwater management plan and #8 - Study and refine knowledge of the groundwater basins. Zone 7 manages imported surface water as the local wholesale agency. In addition, the agency has managed local surface and groundwater resources for beneficial uses for more than 50 years. Consistent with its management responsibilities, duties, and powers, Zone 7 is designated in the 2014 Sustainable Groundwater Management Act (SGMA) as the exclusive GSA within its boundaries (*Figure ES-A*).

This Annual Report for the Sustainable Groundwater Management Program 2020 Water Year Livermore Valley Groundwater Basin (2020 Annual Report) was prepared in compliance with Title 23, California Code of Regulations Section 356, Annual Report and Periodic Evaluations by the Agency for the 2020 Water Year (WY) (October 1, 2019 through September 30, 2020). It summarizes this year's groundwater monitoring, evaluation, and management efforts in the Livermore Valley Groundwater Basin. Table ES-A provides a summary of the required information and the specific location(s) in the report where required information is provided.

For this Annual Report, the results for each of the water resource monitoring, evaluation, and management programs are summarized in the Executive Summary, while the details are provided in the following sections.

- Section 1: Agency and Basin Information
- Section 2: Precipitation and Evaporation
- Section 3: Surface Water
- Section 4: Mining Area
- Section 5: Surface Water-Groundwater Interaction
- Section 6: Groundwater Elevations
- Section 7: Groundwater Quality

- Section 8: Land Surface Elevation
- Section 9: Land Use
- Section 10: Wastewater and Recycled Water
- Section 11: Groundwater Storage
- Section 12: Groundwater Supply Sustainability
- Section 13: Water Quality Sustainability

To avoid duplication, material included in the *Alternative Groundwater Sustainability Plan for the Livermore Valley Groundwater Basin* (Alternative GSP) (*Zone 7, 2016e*) has not been repeated here, but specific sections are referenced when more background detail may be desired.

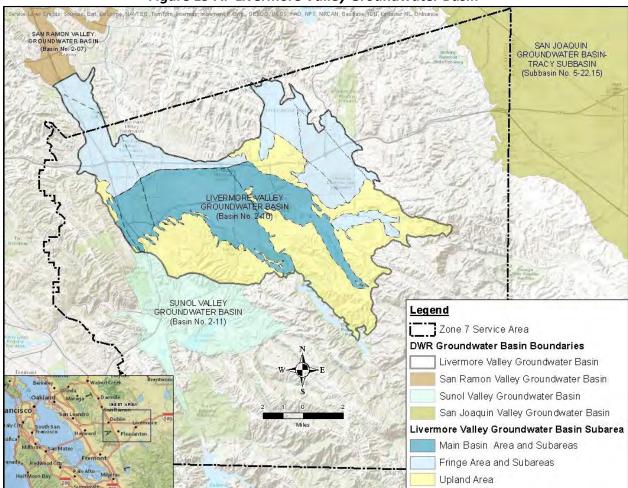



Figure ES-A: Livermore Valley Groundwater Basin

Table ES-A: Location of Required Items in the Sustainable Groundwater Management Program Annual Report 2020 WY

| Annual Report Requirement                                                                                                   | Location(s) in Report                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| (23 CCR Article 7, Sections from Water Code § 10733.2)                                                                      | Text Section                                                                                                                                                                                                                                                                                                                                                                                   | Figures                                                                                                                      |  |
| 356.2 (a) General information, including an executive summary and a location map depicting the basin covered by the report. | <ul> <li>Executive Summary</li> <li>Section 1, Agency and Basin Information</li> <li>Section 1.1, Introduction</li> <li>Section 1.3, Zone 7 Service Area</li> <li>Section 1.6, Plan Area</li> <li>Section 1.7, Basin and Hydrogeologic Setting</li> <li>Section 1.7.1, Basin Management Areas</li> <li>Section 1.8, Aquifer Zones</li> <li>Section 1.9, Groundwater Characteristics</li> </ul> | Figure 1-1, Map of Livermore Valley<br>Groundwater Basin, Zone 7 Service<br>Area, and Basin Management Areas<br>and Subareas |  |

| Annual Report Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location(s) in Report |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (23 CCR Article 7, Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Text Section          | Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from Water Code § 10733.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 356.2 (b) (1) Groundwater elevation data from monitoring wells identified in the monitoring network shall be analyzed and displayed as follows:  (A) Groundwater elevation contour maps for each principal aquifer in the basin illustrating, at a minimum, the seasonal high and seasonal low groundwater conditions.  (B) Hydrographs of groundwater elevations and water year type using historical data to the greatest extent available, including from January 1, 2015, to current reporting year. |                       | <ul> <li>Figure ES-1, Key Well Hydrograph (Bernal)</li> <li>Figure 6-3: Historical Key Well Hydrographs, 1901 to 2020 Water Years</li> <li>Figure 6-4: Groundwater Gradient Map, Upper Aquifer, Spring 2020 WY</li> <li>Figure 6-5: Groundwater Gradient Map, Upper Aquifer, Fall 2020 WY</li> <li>Figure 6-6: Change in Groundwater Elevation, Upper Aquifer, Fall 2019 WY to Fall 2020 WY</li> <li>Figure 6-8: Groundwater Gradient Map, Lower Aquifer, Spring</li> <li>Figure 6-9: Groundwater Gradient Map, Lower Aquifer, Fall 2020 WY</li> </ul> |

| Annual Report Requirement                                                                                                                                                                                                                                                                                                                                                                                                | Location(s) in Report                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (23 CCR Article 7, Sections from Water Code § 10733.2)                                                                                                                                                                                                                                                                                                                                                                   | Text Section                                                                                                                                                                                                                                                                                                                                                                                             | Figures                                                                                                                                                                                                                                                                                      |  |
| 356.2 (b) (2) Groundwater extraction for the preceding water year. Data shall be collected using the best available measurement methods and shall be presented in a table that summarizes groundwater extractions by water use sector and identifies the method of measurement (direct or estimate) and accuracy of measurements, and a map that illustrates the general location and volume of groundwater extractions. | <ul> <li>Section 11, Groundwater Storage</li> <li>Table 11-A: HI Method Groundwater Storage Supply and Demand Volumes, 2020 WY (AF)</li> <li>Table 11-B: Groundwater Storage Summary, 2020 WY (in Thousand AF)</li> <li>Table 11-2: Description of Hydrologic Inventory Components</li> <li>Table 11-3: Historical Groundwater Storage, Hydrologic Inventory Method, 1974 to 2020 Water Years</li> </ul> | Figure 11-3: Graph of Historical<br>Groundwater Storage, 1974 to 2020<br>Water Years                                                                                                                                                                                                         |  |
| 356.2 (b) (3) Surface water supply used or available for use, for groundwater recharge or in-lieu use shall be reported based on quantitative data that describes the annual volume and sources for the preceding water year.                                                                                                                                                                                            | Section 12, Groundwater Supply Sustainability Table 12-A: Imported Water Sources for the 2020 Calendar Year (AF)                                                                                                                                                                                                                                                                                         | <ul> <li>Figure 12-1: Livermore-Amador Valley Water Supply and Use, 2020 Water Year</li> <li>Figure 12-2: Valley Water Production from Imported Water and Groundwater, 1974 to 2020 Water Years</li> <li>Figure 11-5: Main Basin Groundwater Production, 1974 to 2020 Water Years</li> </ul> |  |

| Annual Report Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location(s) in Report                                                                                                                                                                                                    |                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (23 CCR Article 7, Sections from Water Code § 10733.2)                                                                                                                                                                                                                                                                                                                                                                                                                                           | Text Section                                                                                                                                                                                                             | Figures                                                                                                                                                                                                  |
| 356.2 (b)(4) Total water use shall be collected using the best available measurement methods and shall be reported in a table that summarizes total water use by water use sector, water source type, and identifies the method of measurement (direct or estimate) and accuracy of measurements. Existing water use data from the most recent Urban Water Management Plans or Agricultural Water Management Plans within the basin may be used, as long as the data are reported by water year. | Section 12, Groundwater Supply Sustainability Section 11, Groundwater Storage  • Table 11-2: Description of Hydrologic Inventory Components Section 9, Land Use  • Table 9-1: Table of Livermore Valley Land Use Acreage | Figure 12-1: Livermore-Amador Valley Water Supply and Use, 2020 Water Year                                                                                                                               |
| 356.2 (b)(5)(A) Change in groundwater in storage maps for each principal aquifer in the basin.                                                                                                                                                                                                                                                                                                                                                                                                   | Section 11, Groundwater Storage                                                                                                                                                                                          | <ul> <li>Figure 6-10: Change in Groundwater<br/>Elevation, Lower Aquifer, Fall 2019 WY<br/>to Fall 2020 WY</li> <li>Figure 11-2: Change in Groundwater<br/>Storage, Fall 2019 to Fall 2020 WY</li> </ul> |

| Annual Report Requirement                                                                                                                                                                                                                                                                                    | Location(s) in Report |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|
| (23 CCR Article 7, Sections from Water Code § 10733.2)                                                                                                                                                                                                                                                       | Text Section          | Figures                                                                                |
| 356.2 (b)(5)(B) A graph depicting water year type, groundwater use, the annual change in groundwater in storage, and the cumulative change in groundwater in storage for the basin based on historical data to the greatest extent available, including from January 1, 2015, to the current reporting year. |                       | Figure 11-3: Graph of Historical     Groundwater Storage, 1974 to 2020     Water Years |

| Annual Report Requirement                                                                                                                                                                         | Location(s) in Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| (23 CCR Article 7, Sections from Water Code § 10733.2)                                                                                                                                            | Text Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figures |  |
| 356.2 (c) A description of progress towards implementing the Plan, including achieving interim milestones, and implementation of projects or management actions since the previous annual report. | <ul> <li>Section 11, Groundwater Storage</li> <li>Section 12, Groundwater Budget</li> <li>Section 12, Groundwater Supply Sustainability</li> <li>Section 12.1, Introduction</li> <li>Section 12.2, Import of Surface Water</li> <li>Section 12.4, Future Supply Reliability</li> <li>Section 12.5, Water Conservation</li> <li>Section 12.6, Chain of Lakes Recharge Projects</li> <li>Section 12.7, Well Master Plan</li> <li>Section 12.9, Existing and Future Recycled Water Use</li> <li>Section 13, Water Quality Sustainability</li> <li>Section 13.2, Well Ordinance Program</li> <li>Section 13.3, Toxic Site Surveillance Program</li> <li>Section 13.4.2, Salt Management</li> <li>Section 13.5, Nutrient Management</li> <li>Section 13.5.3, OWTS Management</li> </ul> |         |  |
| AF acre-feet                                                                                                                                                                                      | OWTS On-Site Wastewater Treatment System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |  |
| GW groundwater                                                                                                                                                                                    | WY water year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |
| HI Hydrologic Inventory Method                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |

#### ES.2 2020 Groundwater Conditions Overview

#### ES.2.1. Overview

Zone 7 has been managing groundwater resources sustainably for the past 50 years as demonstrated in *Figure ES-B*. Zone 7 was able to keep the groundwater resources replenished and minimize reliance on groundwater production to meet potable water demands during the 2020 WY. Overall, groundwater conditions in the Livermore Valley Groundwater Basin are stable and have recovered from the 2011-2015 drought.

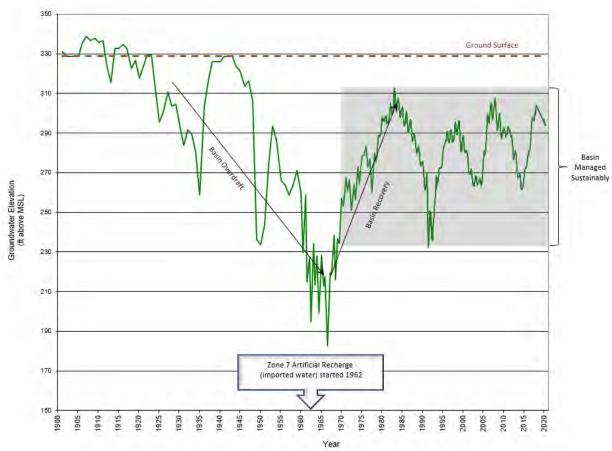



Figure ES-B: Bernal Key Well Hydrograph

Table ES-B summarizes the five sustainability indicators, their associated undesirable results, and minimum thresholds as presented in the Alternative Groundwater Sustainability Plan (GSP). The table also includes the 2020 WY status for each indicator and any action taken in the 2020 WY or planned for the upcoming water year. More in-depth descriptions of each sustainability indicator can be found in the sections of this Executive Summary that immediately follow and in later chapters of this 2020 Annual Report.

Table ES-B: Summary of Sustainability Indicators and 2020 WY Status

| Sustainability                               | ability Undesirable Minimum Threshold Alt Status 2020 WY                                             |                                                    | Action Taken                                                                                                                            |                                                                                                              |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Indicator                                    | Results Alt GSP                                                                                      | GSP                                                | Status 2020 WY                                                                                                                          | Action Taken                                                                                                 |
| Groundwater<br>Levels                        | Loss of wellfield or<br>loss of domestic<br>supply well                                              | Historic Lows                                      | Main Basin was 10' to 160' above historic lows in all areas except limited areas surrounding Lake B and Lake D due to mining activities | Increased monitoring of the quarry operations to prevent undesirable results                                 |
| Groundwater<br>Storage                       | Chronic loss of storage                                                                              | Total Storage above 128<br>TAF (Historic Low)      | Total Storage at 239.5 TAF, (111.5<br>TAF above Historic Low)                                                                           | No action needed                                                                                             |
| Groundwater<br>Quality                       | Lower Aquifer degradation resulting in wellfield not being suitable to provide drinking water supply | TDS >500 mg/L                                      | Main Basin avg TDS = 677 mg/L TDS was detected above the minimum threshold in several municipal supply wells                            | Increase municipal supply pumping, operation of MGDP, and artificial groundwater recharge with low TDS water |
|                                              |                                                                                                      | NO3 (as N) > 10mg/L                                | NO3 (as N) exceeded threshold in<br>Mocho II Subarea, but overall<br>continues to decrease with time                                    | Continue to monitor                                                                                          |
|                                              |                                                                                                      | Boron > 1.4 mg/L                                   | Boron just barely exceeded<br>threshold in one well in the Mocho<br>Wellfield at 1.41 mg/L                                              | Continue to monitor                                                                                          |
|                                              |                                                                                                      | Total Chromium > 0.050<br>mg/L <sup>1</sup>        | Chromium threshold was not exceeded in any municipal or lower aquifer wells <sup>2</sup>                                                | No action needed                                                                                             |
| Land<br>Subsidence                           | Inelastic<br>subsidence                                                                              | Land surface elevation decrease of 0.4'            | Elastic fluctuations less than 0.04' for the year                                                                                       | No action needed                                                                                             |
| Surface Water-<br>Groundwater<br>Interaction | Depletion of<br>surface water in<br>the Alkali Sink                                                  | Elev 491' in 2S/2E 34E1<br>Elev 501' in 2S/2E 27P2 | Elev 493.9' in 2S/2E 34E1<br>Elev 501.55' in 2S/2E 27P2                                                                                 | No action needed                                                                                             |

<sup>&</sup>lt;sup>1</sup>The minimum threshold was changed from CrVI < 0.010 mg/L in the Alternative GSP to Total Cr < 0.050 mg/L after SWRCB rescinded the CrVI MCL in 20

<sup>&</sup>lt;sup>2</sup>One upper aquifer monitoring well in a fringe basin and one upper aquifer monitoring well in the main basin exceeded the threshold.

# ES.2.2. Surface Water – Groundwater Interaction

Ongoing monitoring and management by Zone 7 have supported the maintenance of steady groundwater levels in the Springtown Alkali Sink area, indicating no significant surface water depletion since the late 1970s. Results for 2020 WY indicate that groundwater levels continue to be above the thresholds defined in the Alternative GSP. Zone 7's ongoing Surface Water-Groundwater Interaction Monitoring Program and results for the 2020 WY are described in Section 5, Surface Water-Groundwater Interaction. Additional potential groundwater dependent ecosystems (GDEs) are being investigated for the Five-Year Update of the Alternative GSP.

#### ES.2.3. Groundwater Levels

Zone 7's Groundwater Elevation Monitoring Program includes the measurement of groundwater levels in monitoring and production wells to confirm that management objectives are met, to assess groundwater supplies, and to define any new management objectives needed to achieve sustainability. The program focuses on the Main Basin, where groundwater is pumped for municipal uses. However, water levels are also measured in most of the Fringe Areas.

Groundwater levels for the 2020 WY followed a typical historical seasonal pattern: rising in the beginning of the water year with rainfall recharge and reduced pumping, levelling off in late spring, and then dropping during the second half of the water year as groundwater demand increased. Compared to the levels at the end of the 2019 WY, when the basin was largely full, groundwater elevations generally decreased everywhere in the Main Basin. In general, groundwater elevations remained considerably above the threshold elevations (historic lows).

Upper Aquifer water levels generally dropped throughout the Main Basin by an average of 5 to 10 feet in each of the subbasins because of mining activity and below-average rainfall and artificial stream recharge. Groundwater levels in the Fringe Areas (which only have one aquifer) stayed relatively constant throughout 2020 WY, varying generally by less than approximately 5 feet (ft).

At the end of the water year, groundwater levels in the vicinity of the Bernal Subarea were more than 110 ft above the historic low. In the Amador Subarea, levels were generally 25–90 ft above the historic lows except in the immediate vicinity of two mining excavations that were being dewatered during the water year. Over the majority of the Mocho II Subarea, the end-of-year groundwater levels were 50–135 ft above historical lows.

Water levels in the immediate vicinity of Lakes B and D (mining area) were below the historic low water level in the 2020 WY, with no observed undesirable results. The water level in Lake B was 2 ft below the historic low, while Lake D was about 45 ft below the historic low. The water levels are drawn down in that area due to dewatering by the quarry operator for mining activities. Zone 7 continues to monitor the localized impacts of this use for any potential undesirable

results. *Section 6, Groundwater Elevations,* further describes Groundwater Elevation Monitoring Program and results for the 2020 WY.

#### **ES.2.4.** Groundwater Quality

Groundwater quality is an important factor in achieving and maintaining sustainable groundwater resources. The main purpose of monitoring groundwater quality is to assure that remediation of past groundwater degradation is proceeding, and that no new degradation has occurred or is currently taking place. Zone 7 maintains a robust monitoring network of wells for annual sampling and reporting. Each well in the program is monitored and/or sampled to fulfill one or more specific objectives. Zone 7's Groundwater Quality Monitoring Program conducts annual sampling and analysis for inorganic constituents of concern for meeting the Livermore Basin groundwater quality objectives. The four main constituents of concern that are monitored and have set minimum thresholds are total dissolved solids (TDS), nitrate, boron, and chromium (Cr). In addition, per- and polyfluoroalkyl substances (PFAS) were added to the list of analytes for all municipal supply wells and select monitoring wells in the 2019 WY. The sampling for PFAS continued in the 2020 WY with additional monitoring wells sampled to help identify the extent and source of PFAS. Zone 7 also has programs that review permits, correspondence, and monitoring reports required by other agencies related to contamination and nutrient loads (see ES 3.2, Water Quality Sustainability). Overall, there were no significant groundwater quality changes relative to the minimum thresholds encountered during the 2020 WY. A summary of the results of each of these constituents for the 2020 WY are provided below.

#### <u>TDS</u>

The TDS minimum thresholds for the basin are 500 milligrams per liter (mg/L) in the Main Basin and 1000 mg/L in the Fringe Areas. In the upper aquifer, there continues to be two main areas of the groundwater basin where TDS concentrations exceed 1,000 mg/L, both are in the northern portions of the Fringe Area. The highest TDS concentration was encountered in the northwest portion of the Fringe Area at 20,380 mg/L (19,600 mg/L last year). In the lower aquifer, many of the municipal supply wells in the Pleasanton area produced water having TDS concentrations above the minimum threshold. The highest concentration was detected in a San Francisco Public Utilities Commission (SFPUC) well at 932 mg/L (829 mg/L last year). The highest TDS concentration detected in a Zone 7 well was in the Mocho 4 Well at 854 mg/L (962 mg/L last year). Zone 7 used its Mocho Groundwater Demineralization Plant (MGDP) to help reduce the TDS in delivered water in the 2020 WY. Other planned corrective actions and strategies are described in Section 5.3.3.2, Salt Management Strategy of the Alternative GSP.

#### **Nitrates**

There are ten Areas of Concern (AOCs) in the basin with historic nitrate concentrations above the minimum threshold (10 mg/L nitrate as nitrogen). During the 2020 WY, the highest concentration of nitrate in the upper aquifer was encountered in the May School AOC at 42 mg/L (32.3 mg/L).

last year). In the lower aquifer, nitrate was only detected above the minimum threshold in the Buena Vista AOC with a maximum nitrate concentration at 11.2 mg/L (11 mg/L last year). The nitrate plumes appear to be stable and will continue to be monitored.

#### Boron

Boron is a naturally occurring element in the Livermore Valley Groundwater Basin with a basin minimum threshold 1.4 mg/L. There are two main areas in the upper aquifer where Boron exists above the minimum threshold, both in the northern Fringe Areas. The highest concentration continues to be in the northeastern portion of the Fringe Area at 29 mg/L (31 mg/L last year). In the lower aquifer, Boron was detected above the minimum threshold in one monitoring well at 2.6 mg/L in the Mocho II Subarea (1.78 mg/L last year) and in one municipal supply well at 1.41 mg/L in Zone 7's Mocho 3 well (1.6 mg/L last year).

#### Chromium

The minimum threshold for total chromium in groundwater is 0.050 mg/L, which matches the State's MCL. During the 2020 WY, total chromium was detected above the minimum threshold in two upper aquifer monitoring wells: one located in the northwest portion of the Fringe Area at 0.108 mg/L (not detected last year) and one located in the northeastern portion of the Fringe Area at 0.094 mg/L (0.063 mg/L last year). Total chromium was not detected above the minimum threshold in any municipal supply wells or lower aquifer monitoring wells in 2020 WY.

#### **PFAS**

PFAS are a large group of human-made substances that do not occur naturally in the environment and are classified by the Environmental Protection Agency (EPA) as "contaminants of emerging concern". While there are no current federal or California State limits (e.g., Maximum Contaminant Levels [MCLs]) for any PFAS compounds, in December 2019 the EPA published draft screening levels of 40 parts per trillion (ppt) and Preliminary Remediation goals (PRGs) of 70 ppt for perfluorooctanesulfonic acid (PFOS) and/or perfluorooctanoic acid (PFOA) (combined or individually) for groundwater that is a current or potential source of drinking water. During the 2020 WY Zone 7 sampled its municipal wells quarterly for PFAS as required by the California State Water Resources Control Board Division of Drinking Water (DDW) and tested several other monitoring program wells to determine if PFAS contamination is widespread. Only one of Zone 7's municipal wells had PFOS concentrations (Mocho Well 1 at 110 ppt) that exceeded the PRGs. Also during the water year, Zone 7 hired Jacobs Engineering, Inc. to conduct a PFAS Potential Source Investigation (Jacobs, 2020). The investigation, which concluded in December 2020, included recommendations for additional sampling of existing monitoring wells. Those wells will be incorporated into the 2021 WY sampling program. Jacob's report and other information on PFAS are located on the Zone 7 website: http://www.zone7water.com/pfasinformation.

More detailed results of Zone 7's Groundwater Quality Monitoring Program can be found in *Section 7, Groundwater Quality*. A description of Zone 7's management actions regarding groundwater basin quality can be found in *Section 13, Water Quality Sustainability*.

#### ES.2.5. Subsidence

Up through the 2018 WY, Zone 7 contracted with a licensed land surveyor to measure the land surface elevations of approximately 40 benchmarks that extended from bedrock outside of the Main Basin to the vicinity of Zone 7's production wellfields. In 2016, Zone 7 contracted with TRE Canada, Inc. (TRE) to evaluate Interferometric Synthetic Aperture Radar (InSAR) as an alternative to land surveying for subsidence monitoring. Starting in 2019, Zone 7 is now using InSAR instead of the land surveys for analyzing land subsidence. Again for the 2020 WY, Zone 7 contracted with TRE Altamira to acquire satellite data collected since the previous year's study. This year's study indicated that there continues to be no inelastic (permanent) defomation; just seasonal and cyclical surface elevation fluctuations that correlate with groundwater elevation fluctuations. These "elastic" fluctuations generally have been + or - 0.07 ft per year; and were less than 0.04 ft of net change during the 2020 WY. The results are presented in *Section 8, Land Surface Elevation*.

#### **ES.2.6.** Groundwater Storage

Zone 7 uses two methods for calculating groundwater storage in the Main Basin: The Groundwater Elevation (GWE) Method and the Hydrologic Inventory (HI) Method. Storage volumes from the two methods are averaged to estimate the total storage of the Main Basin at the end of each water year (see Section 2.4.1 of the Alternative GSP). Section 11, Groundwater Storage presents the storage volume for the 2020 WY and shows an overall decrease of 12.3 thousand acre-feet (TAF) between the end of the 2019 WY and the end of the 2020 WY. Operational groundwater storage at the end of 2020 WY was 111.5 TAF, which is about 88% of the estimated historical high operational storage (Figure ES-C). The minimum threshold for groundwater storage is shown as the line between Reserve Storage and Operational Storage in Figure ES-C. There were no undesirable results for groundwater storage in the 2020 WY.

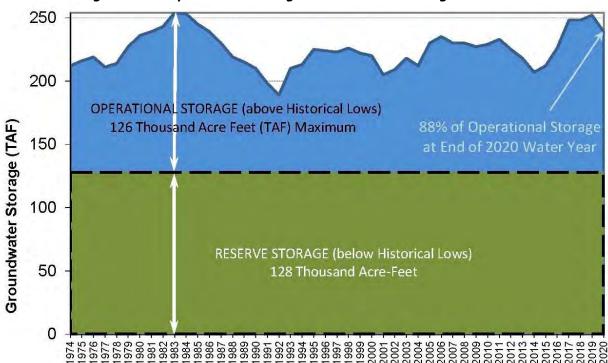



Figure ES-C: Operational Storage in Main Basin Management Area

# ES.3 Project and Management Action Overview

Zone 7 is currently implementing a variety of programs to assess, manage, monitor, and protect groundwater supplies. *Section 12, Groundwater Supply Sustainability* and *Section 13, Water Quality Sustainability* provide details on the key programs Zone 7 managed and implemented during 2020 WY.

#### **ES.3.1.** Groundwater Supply Sustainability

To achieve sustainable groundwater levels, Zone 7 carefully manages all available water supplies, including imported surface water, local surface water, groundwater, and recycled water. During the 2020 WY, Zone 7 imported 26,200 acre-feet (AF) of water to meet potable uses and continued to pursue efforts to strengthen supply reliability of imported water and reduce demand through continued promotion of local conservation efforts. Zone 7 also continued to manage groundwater through monitoring natural recharge and demand, limiting excess groundwater pumping by retailers through quotas, as well as artificial recharge and adjustments to Zone 7 groundwater pumping. In addition, Zone 7 carefully monitors a series of former quarry lakes, known as the Chain of Lakes (COLs), for water storage and groundwater replenishment. Zone 7 was part of a joint effort by the Tri-Valley water agencies, studying the technical feasibility of potable reuse, or purified recycled water, to enhance long-term water supply reliability. In May

2018, the Tri-Valley water agencies completed the Joint Tri-Valley Potable Reuse Technical Feasibility Study. The results showed that potable reuse was technically feasible. The next steps that were identified include a regional water demand study, regional water supply updates, and technical studies regarding the COLs and groundwater injection well siting. These, and Zone 7's other groundwater supply management actions, are discussed in *Section 12*, *Groundwater Supply Sustainability*.

#### ES.3.2. Water Quality Sustainability

Preserving or improving groundwater quality is a key component of sustainable groundwater management. Zone 7 administers four key programs to ensure the protection of groundwater quality: the Water Well Ordinance Program, the Toxic Site Surveillance Program, the Salt Management Plan (SMP), and the Nutrient Management Plan (NMP). During the 2020 WY, 116 drilling permits were issued with groundwater quality protection conditions, and 79% of the permitted work was physically inspected by Zone 7 permit compliance staff. Two new soil and groundwater contamination cases were identified and are being actively monitored and addressed along with 54 other active contamination cases within Zone 7's service area. Seven of these cases are being considered for closure.

Zone 7 also continued to implement its SMP and NMP to monitor, assess, reduce, and manage salt and nutrient loading. As part of its strategy to manage salt loading, Zone 7 exported 1,231 tons of salt from the Valley through the operation of the MGDP. For nutrient management, Zone 7 has a role in managing On-Site Wastewater Treatment System (OWTS) densities within the Livermore Valley Groundwater Basin and watershed, mainly through the approval process for non-residential (e.g. commercial and industrial) OWTS use authorizations. One authorization for a nonresidential OWTS was approved in the 2020 WY. Additional updates or changes made to these programs during the 2020 WY are discussed in *Section 13, Water Quality Sustainability*.

# 1 Agency and Basin Information

#### 1.1 Introduction

Alameda County Flood Control and Water Conservation District, Zone 7 (Zone 7 Water Agency or Zone 7) provides water management in the Livermore Valley Groundwater Basin (California Department of Water Resources (DWR) Basin 2-10) as part of its mission to *Deliver safe*, *reliable*, *efficient*, and sustainable water services, and more specifically address Strategic Plan initiatives #7 - Manage as the Groundwater Sustainability Agency (GSA) and implement the groundwater management plan and #8 - Study and refine knowledge of the groundwater basins. Zone 7 manages imported surface water as the local wholesale agency. In addition, the agency has managed local surface and groundwater resources for beneficial uses for more than 50 years. Consistent with its management responsibilities, duties, and powers, Zone 7 is designated in the 2014 Sustainable Groundwater Management Act (SGMA) as the exclusive GSA within its boundaries (*Figure 1-1*).

Prior to assuming the role of the GSA for the Livermore Valley Groundwater Basin, Zone 7 has been generating annual groundwater reports for public review and submission to the California Department of Water Resources (DWR) since the 2005 Water Year (WY). In 2005, Zone 7 adopted a Groundwater Management Plan (GWMP), which documented ongoing policies and programs for managing groundwater to support existing and future beneficial uses in the valley (*Zone 7, 2005a*). This was amended in June 2015 with the adoption of the Nutrient Management Plan (NMP) (*Zone 7, 2015b*), which added to both the GWMP and the 2004 Salt Management Plan (SMP) (*Zone 7, 2004*). In December 2016, Zone 7 submitted the Alternative Groundwater Sustainability Plan (GSP) for the Livermore Valley Groundwater Basin (Alternative GSP) (*Zone 7, 2016e*) to DWR in compliance with SGMA. The Alternative GSP was approved by DWR in July 2019. The first Five-Year Update to the Alternative GSP is due in January 2022.

This Annual Report for the Livermore Valley Groundwater Basin Sustainable Groundwater Management Program 2020 Water Year (2020 Annual Report) is prepared in compliance with Title 23, California Code of Regulations Section 356, Annual Report and Periodic Evaluations by the Agency. The results for each of the water resource monitoring, evaluation, and management programs are summarized in the Executive Summary, while the details are provided in the main report. In an effort to keep this report concise, historical and reference materials included in the Alternative GSP (*Zone 7, 2016e*) have not been repeated here.

All of the data included in this report are conveyed based on the 2020 WY (i.e., October 1, 2019 through September 30, 2020); however, due to other reporting obligations, some information in this report (e.g., retailer groundwater pumping quota in *Section 11, Groundwater Storage*) is compiled and reported on a calendar year (CY) basis (i.e., January 1 through December 31, 2020).

#### 1.2 Basin Management

This subsection discusses management actions that have taken place since the last Annual Report. Minor changes to each monitoring program, if any, are discussed in the corresponding section. For more information about overall basin management, see *Section 5*, *Projects and Management Actions* of the Alternative GSP (*Zone 7*, 2016e).

In March 2020, Zone 7 was awarded a grant by DWR entitled *Five Year Update: 2022 Alternative Groundwater Sustainability Plan for Livermore Valley Groundwater Basin* for Round 3 of the Sustainable Groundwater Management Planning Grant program funded by Proposition 68 and Proposition 1. The overarching goal of this grant project is to prepare a Five-Year Update for the 2016 Alternative GSP that addresses the DWR recommendations on the original Alternative GSP and addresses data needs and analyses identified by Zone 7 staff. The scope of work includes:

- Adding additional groundwater monitoring wells to address data gaps in the Fringe and Upland Areas,
- Expanding Zone 7's cross-section network,
- Extending the existing Areal Recharge Spreadsheet Model to Fringe and Upland Areas,
- Further studying per- and polyfluoroalkyl substances (PFAS) as a constituent of concern,
- Developing interferometric synthetic aperture radar (InSAR) techniques to monitor subsidence over a larger portion of the groundwater basin,
- Investigating additional existing groundwater dependent ecosystems (GDE), and
- Evaluating management actions taken to reduce high nitrate concentrations in key areas.

The grant award is for \$500,000. Specific details on the project can be found at:

http://www.zone7water.com/alternative-groundwater-sustainability-plan.

#### 1.3 Zone 7 Service Area

No changes have occurred to the Service Area or major customers during the period of this annual report.

The Zone 7 water service area (*Figure 1-1*) is located about 40 miles southeast of San Francisco, and encompasses an area of approximately 425 square miles of the eastern portion of Alameda County, including the Livermore-Amador Valley, Sunol Valley, and portions of the Diablo Range.

Zone 7 also serves a portion of Contra Costa County (Dougherty Valley in San Ramon) through an out-of-service-area agreement with Dublin San Ramon Service District (DSRSD).

As the water wholesaler, Zone 7 supplies treated State Water Project (SWP) water to four local retail water supply agencies (*Figure 1-2*).

- California Water Service —Livermore District (CWS)
- Dublin San Ramon Services District (DSRSD)
- City of Livermore (Livermore)
- City of Pleasanton (Pleasanton)

The agency also provides imported surface water directly to 82 untreated water customers. These direct connections largely supply local agricultural uses.

#### 1.4 Zone 7 Programs

No major changes have occurred to the Zone 7 programs during this reporting period. Minor modifications to each program, if any, are discussed in their corresponding section. The history of Zone 7 Water Agency, including its statutory responsibilities and its ongoing coordination with other local agencies in the Basin, is described in *Section 1.2, Zone 7 Water Agency* of the Alternative GSP (*Zone 7, 2016e*). Overall, Zone 7 has sustainably managed the groundwater basin to avoid undesirable results. The historical groundwater data show that the Basin has been operated sustainably since the mid-1970s, including through three major droughts. Most of the datasets discussed in this annual report date back to 1974, allowing a comprehensive, long-term assessment of Zone 7's basin management. Although some datasets predate 1974, this date was chosen to represent the most comprehensive and consistent collection of data.

Zone 7 is the lead agency for many water resource management programs and coordinates with groundwater resource programs of others in the Basin. The status and results of these programs for the 2020 WY are described in the following chapters of this report:

- Chapter 2: Precipitation and Evaporation monitoring climatological conditions,
- Chapter 3: Surface Water measuring stream flows and quality,
- Chapter 4: Mining Area monitoring mining activities, pond elevations, and water quality in quarry-made lakes,

- Chapter 5: Surface Water/Groundwater Interaction monitoring areas of shallow groundwater that affect surface ecosystems (e.g. Groundwater Dependent Ecosystems or GDEs),
- Chapter 6: Groundwater Elevations monitoring groundwater levels using long-term well measurements coupled with a detailed groundwater basin numerical model,
- Chapter 7: Groundwater Quality monitoring water quality through annual groundwater sampling for salt, nutrient, PFAS, and other parameters,
- Chapter 8: Land Surface Elevation monitoring land surface elevation changes,
- Chapter 9: Land Use monitoring land use over the basin,
- Chapter 10: Wastewater and Recycled Water monitoring wastewater and recycled water volumes/quality and promoting sound recycled water use,
- Chapter 11: Groundwater Storage calculating groundwater storage for both natural and artificial (i.e., Zone 7's conjunctive use recharged and pumped) components,
- Chapter 12: Groundwater Supply Sustainability managing groundwater supplies to meet current and future demands through sustainable conjunctive use (stream recharge and groundwater pumping), and
- Chapter 13: Groundwater Quality Sustainability managing groundwater quality by permitting well installations and destructions, monitoring toxic site cleanups, and calculating salt and nutrient loading.

# 1.5 Groundwater Management Ordinances and Policies

No changes occurred in groundwater ordinances or policies during the reporting period.

<u>Sustainable Groundwater Management Ordinance</u>: In 2017, Zone 7 adopted its Sustainable Groundwater Management Ordinance (Ordinance) to enhance existing sustainable management programs for the local groundwater basin. The Ordinance recognizes groundwater as an essential resource for municipal, industrial, and domestic uses, as well as agricultural production, and sets provisions for groundwater protection within Eastern Alameda County. Nothing in the ordinance determines or alters water rights, groundwater rights, or existing county ordinances. The Ordinance is discussed in more detail in *Section 12.8* of this report.

<u>Well Ordinance</u>: Zone 7 administers the drilling/well permit program within its service area pursuant to a Memorandum of Understanding (MOU) with Alameda County and ordinances adopted by the Cities of Dublin, Pleasanton, and Livermore. As a result, any planned new well construction, soil-boring construction, or well destruction must be permitted by Zone 7 before the work is started. Additionally, all unused or abandoned wells must be properly destroyed; or, if there are plans to use the well in the future, a signed statement of intent to use must be filed at Zone 7. The permits issued during the 2020 WY are discussed in *Section 13.2* of this report.

Wastewater Management Policies: In 1982, the Zone 7 Board of Directors adopted the Wastewater Management Plan (WWMP) for the Unsewered, Unincorporated Area of Alameda Creek Watershed above Niles (Zone 7, 1982) and its recommended policies (Resolution No. 1037). A separate policy was established in 1985 that prohibits the use of septic tanks for new developments zoned for commercial or industrial uses (Resolution 1165). Whereas Alameda County Department of Environmental Health (ACDEH) administers the County Onsite Wastewater Treatment Systems (OWTS) Ordinance, Zone 7 approval is explicitly required for nonresidential uses within the Upper Alameda Creek Watershed (Resolution 1165). The nonresidential OWTS applications submitted to Zone 7 during the 2020 WY are discussed in Section 13.5.3 of this report.

#### 1.6 Plan Area

No changes occurred to the plan area during the reporting period. The Plan Area (*Figure 1-1*) is the entire Livermore Valley Groundwater Basin (DWR Basin No. 2-10), encompassing approximately 69,600 acres (109 square miles) in Alameda and Contra Costa counties. The Plan Area is referred to as the Basin in this document. While the Alameda County portion of the Basin lies wholly within Zone 7's Service Area, the northwestern portion of the Basin extends beyond the Zone 7 Service Area into Contra Costa County. In 2016, Zone 7 entered into a MOU with East Bay Municipal Utilities District (EBMUD), City of San Ramon, and DSRSD under which Zone 7 will serve as the GSA for the Contra Costa portion of the Basin.

Adjacent groundwater basins are the San Ramon Valley (Basin No. 2-07), a very-low priority basin that extends to the northwest in Contra Costa County, and the Sunol Valley (Basin No. 2-11), which is also a very-low priority basin to the southwest of the Livermore Valley Groundwater Basin. A small portion of the Tracy Subbasin (Basin No. 5-22.15), a medium priority basin, is located within the Zone 7 service area. This portion of the Tracy Subbasin is managed by Byron-Bethany Irrigation District (BBID) under a MOU between BBID and Zone 7 dated April 26, 2017.

Zone 7 used the updated (2016) DWR Bulletin 118 boundary for the Livermore Valley Groundwater Basin in its Alternative GSP and this 2020 Annual Report. This boundary differs slightly from the basin boundary used in the original GWMP and earlier annual reports. Details regarding the plan area, including surface and well water supplies, land use, general plans, and well permitting are provided in *Section 1.3*, *Plan Area*, of the Alternative GSP.

# 1.7 Basin and Hydrogeologic Setting

#### 1.7.1 Basin Management Areas

The Livermore Valley Groundwater Basin is an inland alluvial basin underlying the east-west trending Livermore-Amador Valley (Valley) in northeastern Alameda County. The Valley floor covers about 42,000 acres, extends approximately 14 miles in an east-west direction, and varies from 3 to 6 miles in width. It is surrounded primarily by north-south trending faults and the hills of the Diablo Range. The Livermore Valley Groundwater Basin is located in the Valley floor and extends south and north into the uplands of Pleasanton and Livermore. Groundwater generally flows from the southeast and east to the west, toward the municipal wellfields in the West Amador and Bernal Subareas. For more detailed information about the history of the Livermore Valley Groundwater Basin, and additional details regarding the physical setting, climate, streams, GDEs, soils, and geology, see Section 2, Basin Setting, of the Alternative GSP.

For purposes of groundwater management, the Basin has been divided into three management areas based on varying geologic, hydrogeologic, and groundwater conditions. These are the Main Basin, Fringe Areas, and Upland Areas shown in *Figure 1-1* and listed in *Table 1-A*.

Table 1-A: Basin Management Areas

| Basin        | Area         | General Description             |
|--------------|--------------|---------------------------------|
| Main Basin   | 19,809 acres | Central portion of Valley floor |
| Fringe Areas | 21,956 acres | Edges of Valley floor           |
| Upland Areas | 27,778 acres | Gently sloping Valley wall      |
| Total        | 69,557 acres |                                 |

#### 1.7.2 Main Basin

The Main Basin<sup>1</sup> covers almost 20,000 acres and contains the thickest alluvial deposits, the highest-yielding aquifers, and the best-quality groundwater within the Basin.

The Main Basin is hydraulically connected to the Fringe Areas through the shallow alluvium; however, subsurface inflow from the Fringe Areas into the deeper portions of the Main Basin is

<sup>&</sup>lt;sup>1</sup> Prior to 1985, this area was called the central basin; for the past 30 years the term *Main Basin* has been used.

considered to be minor due to subsurface geologic barriers believed to be either faulting or an alluvium/bedrock contact. The deeper aquifers of the Main Basin are primarily recharged by rainfall and surface waters where they outcrop in the Upland Areas and through vertical migration of groundwater within the Main Basin itself. The Main Basin aquifers generally have the highest transmissivity and the best quality groundwater. All of the Valley's municipal supply wells are completed in the "Lower" Main Basin Aquifer Zone (described in *Section 1.8.3*), and some include the deeper Livermore Formation.

#### 1.7.3 Fringe Areas and Subareas

The Fringe Areas are defined by water-bearing areas outside of the Main Basin that consist of thinner deposits of recent alluvium underlain by relatively shallow bedrock. These areas are also characterized by lower-permeability aquifers overlain by clay-rich soils. Because the alluvium is generally thinner, the primary hydraulic connection between the Fringe Areas and the Main Basin is through the Upper Aquifer. In general, lower alluvium aquifer units in the Main Basin do not extend into the Fringe Area. Domestic wells located in the Fringe Area are typically completed in the deeper aquifers of the Livermore Formation.

Areas of significant subsurface inflows through the Upper Aquifer from the Fringe Areas into the Main Basin occur in the following locations.

- Along the northern and eastern boundaries between these two areas, currently estimated at about 900 acre-feet per year (AF/yr), and
- Along the northwestern boundary (at the Bernal Subarea) of the Main Basin estimated to be about 100 AF/yr.

#### 1.7.4 Upland Areas

The Upland Areas are primarily defined by areas where the recent alluvium is absent but the Livermore Formation and other older water-bearing bedrock units are exposed. These consolidated units are more resistant to erosion and form low, rolling hills around the moregently sloping alluvial valley. Most of the precipitation that falls on the Upland Areas leaves as runoff and contributes to streams in both the Fringe Areas and Main Basin. A small amount of deep percolation of precipitation in the Upland Areas may also contribute to the Main Basin's subsurface inflow. The northern portion of the Upland Areas is called the Tassajara Uplands, and the southern and eastern portions are called the Livermore Uplands (*Figure 1-1*). Neither of these Upland Areas have been further divided into subareas because of the absence of significant groundwater pumping and the lack of need for localized groundwater management actions. The long history of groundwater levels in the few domestic and livestock supply wells present in the Upland Areas demonstrate that current uses/withdrawals are currently sustainable.

# 1.8 Aquifer Zones

### 1.8.1 Introduction

Although multiple aquifers have been identified in the Main Basin alluvium, wells have been classified generally as being completed in either the Upper or Lower Aquifer Zone. In the Main Basin, the two aquifer zones are generally separated by a relatively continuous silty clay aquitard, which is up to 50 feet (ft) thick and occurs between 80 and 175 ft below ground surface (bgs). Additional details as well as a stratigraphic cross section of the Main Basin Upper and Lower Aquifers are provided in *Section 2.2.3, Basin Hydrostratigraphy* of the Alternative GSP. Such differentiation is not applicable to the Fringe and Upland Areas.

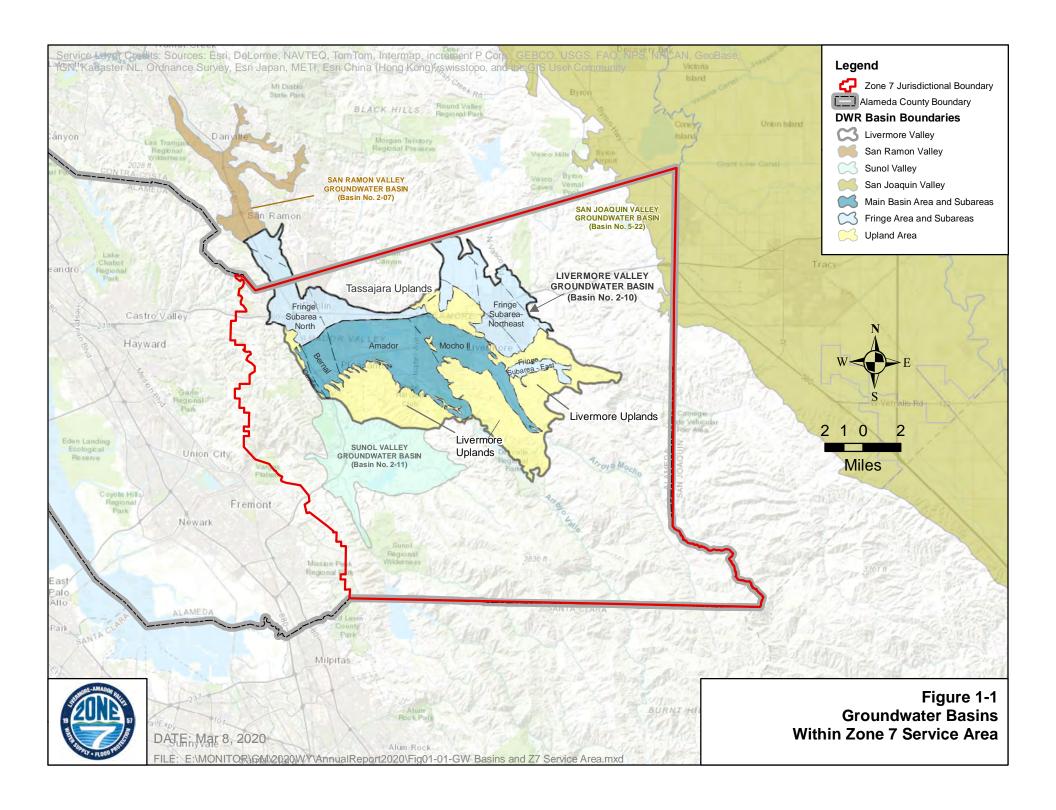
# 1.8.2 Upper Aquifer Zone

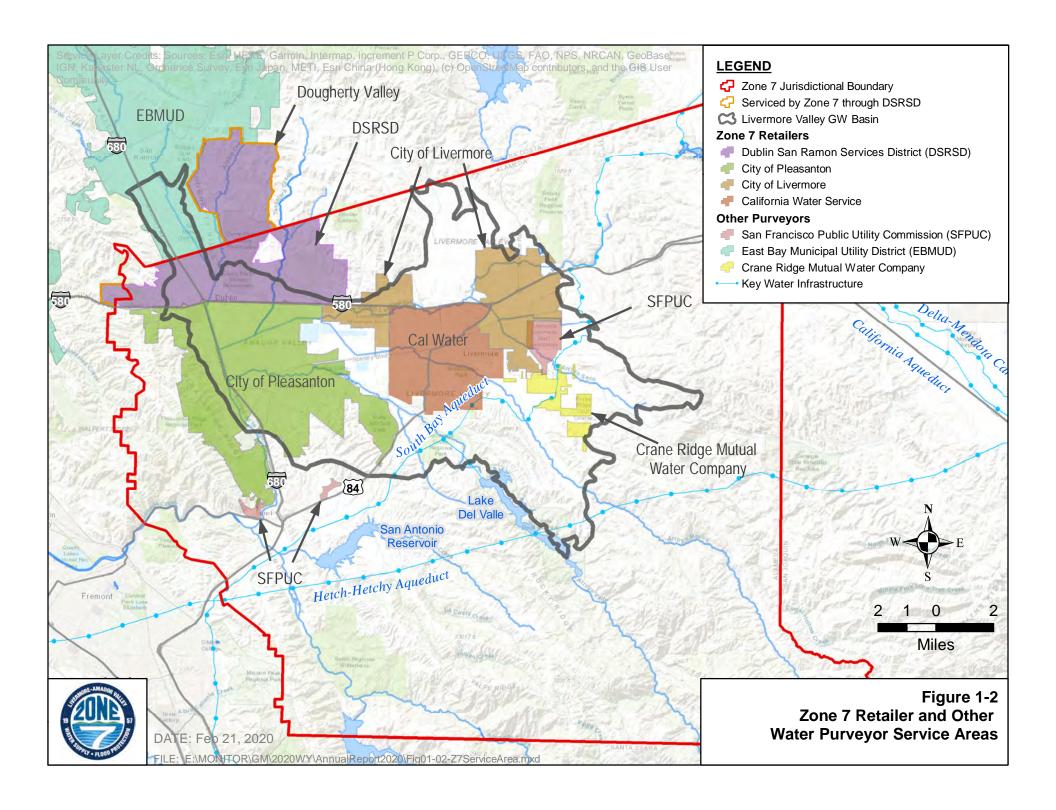
The Upper Aquifer consists of alluvial materials, primarily including sandy gravel and clayey or silty gravels. These gravels are usually encountered underneath a confining surficial clay or silty clay layer, typically 5 to 70 ft bgs in the west and exposed at the surface in the east. They are present in the Main Basin and Fringe Areas. The base of the Upper Aquifer Zone varies from 80 to 175 ft bgs in the Main Basin and 10 to 70 ft bgs in the Fringe Area (*DWR*, 1974). Groundwater in this zone is generally unconfined; however, when water levels are high, portions of the Upper Aquifer Zone in the western portion of the Main Basin can become confined.

# 1.8.3 Lower Aquifer Zone

All aquifers encountered below the confining aquitard in the central portions of the Main Basin are known collectively as the Lower Aquifer Zone. The Lower Aquifer materials consist of coarse-grained, water-bearing units interbedded with relatively low-permeability, fine-grained units. The Lower Aquifer Zone derives most of its water from the Upper Aquifer Zone through the leaky aquitard(s) when piezometric heads in the upper zone are greater than those in the lower zone. Some replenishment may also come from the water-bearing members of the Livermore Formation that are in contact with the Lower Aquifer Zone.

### 1.9 Groundwater Characteristics


The northern extent of the Livermore Valley Groundwater Basin is dominated by a sodium-rich water, while much of the western part of the Basin near Pleasanton has a magnesium-sodium characteristic (i.e., both magnesium and sodium are dominant cations). The area along the eastern portion of the Basin, beneath the City of Livermore, has magnesium as the predominant cation. Most groundwater in the Main Basin, where all of the Valley's municipal supply wells are completed, is hard or very hard (i.e., calcium carbonate [CaCO<sub>3</sub>] greater than 120 milligrams


per liter [mg/L]). Groundwater tends to be the hardest in the western portion of the Main Basin. Groundwater of the Lower Aquifer Zone generally has lower total dissolved solids (TDS) than that of the Upper Aquifer Zone; however, both aquifer zones are designated for potable use in the Regional Water Quality Control Board Water Quality Control (RWQCB) San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan) (RWQCB, 2011). For more information on the characteristics of the groundwater basin see Section 1.3.6, Beneficial Uses of the Alternative GSP.

# 1.10 Monitoring Networks and Modeling

Changes to the monitoring network or modeling parameters made during the reporting period are provided in more detail identifying the changes in subsequent subsections of this 2020 WY Annual Report. Zone 7 has developed and implemented an extensive basin-wide monitoring network that has expanded and improved over time. The overall objective of the monitoring network is to provide sufficient information to allow tracking of groundwater conditions to meet the sustainability goal of the Basin, including the prevention of undesirable results. The monitoring network includes six distinct monitoring programs: 1. Precipitation and Evaporation Monitoring, 2. Surface Water Monitoring, 3. Groundwater Elevation Monitoring, 4. Groundwater Quality Monitoring, 5. Land Surface Elevation Monitoring, and 6. Wastewater and Recycled Water Monitoring. Zone 7 uses a proprietary data management system to store and analyze data gathered in these programs. Details regarding the monitoring programs are provided in *Section 4, Monitoring Networks*, of the Alternative GSP.

Zone 7 also maintains a numerical groundwater model of the basin for analyzing various groundwater basin management actions. This MODFLOW model uses Groundwater Vistas and various MODFLOW packages (e.g., NWT, MT3D) to perform the modeling calculations. The active part of the groundwater model encompasses only the Main and North Fringe Subareas of the Basin. Additional information regarding the groundwater model is provided in *Section 2.6, Groundwater Model*, of the Alternative GSP.





# 2 Precipitation and Evaporation

# 2.1 Program Description

# 2.1.1 Monitoring Network

Detailed information on Zone 7's overall Climatological Monitoring Program can be found in *Section 4.2, Climate Monitoring* of the Alternative GSP. Zone 7 uses a network of climatological stations (see *Figure 2-1* and *Table 2-1*) to provide high-quality data for water inventory calculation and management decisions, including both daily record stations and 15-minute recorder stations. Zone 7's climatological monitoring program also contains both reference evapotranspiration (ETO) and pan evaporation stations to determine water losses to the atmosphere. Station 191 California Irrigation Management Information System (CIMIS) is a reference ETo station which estimates the ETo value of the water used by a fully-watered, full-cover grass surface. The pan evaporation stations at Lake Del Valle (LDV) and Livermore Water Reclamation Plant (LWRP) measure evaporation directly. This data is then converted to ETo to use with the CIMIS readings to calculate pond evaporation. The CIMIS Station's ETo is also used as part of Zone 7's Water Conservation program to help regulate weather-based irrigation controllers (WBICs, also known as "SMART" Controllers).

# 2.1.2 Program Changes for the Water Year

The names of the stations in the program have been modified so that:

- " STA" was removed.
- Station numbers were reformatted to 3 characters.

So, for example, Station CM STA 17 was renamed to CM 017.

As of June 1<sup>st</sup>, 2020, Station 15E (CM\_015E or 15E) at Wellingham Drive in Livermore (which has data back to 1871) is no longer collecting data. The National Weather Service is now redirecting 15E data requests to the rain gauge at Livermore Municipal Airport (KLVK) located two miles west of 15E. Therefore, Zone 7 added the CM\_KLVK gauge to the program and created a Livermore Rainfall Index (LRI) for the attached figures and tables that consists of CM\_015E data up to June 2020 and the CM\_KLVK data thereafter (*Figure 2-2*).

## 2.2 Results for the 2020 Water Year

In the 2020 WY, total rainfall on the watershed was 65% of average (*Table 2-2*). Rainfall totals from individual stations ranged from 7.46 inches (58% of average) at Arroyo Mocho near Livermore (CM\_AMNL) to 22.55 inches (93% of average) at Lick Observatory (CM\_044) in Santa Clara County. Rainfall for the LRI totaled 10.48 inches (72% of average) in the 2020 WY.

ETo for the 2020 WY was 48.89 inches (113% of normal) at LDV Station (CM\_LDV); 50.23 inches (98% of normal) at the CIMIS Station 191 (CM\_191); and 47.05 inches (102% of normal) at the LWRP Station (CM\_LWRP).

Rainfall and evaporation information is provided in the following tables.

- Table 2-1, Table of Climatological Stations, 2020 WY
- Table 2-2, Monthly Precipitation Data, 2020 WY
- Table 2-3, Historical Monthly Precipitation (inches), Monitoring Station 15E, Livermore, 1871 to 2020 WY
- Table 2-4, Monthly Evapotranspiration Data, 2020 WY
- Table 2-5, Historical Monthly Pan Evaporation (inches), Monitoring Station Lake Del Valle, Livermore



# TABLE 2-1 TABLE OF CLIMATOLOGICAL STATIONS 2020 WATER YEAR

|          |                     |                                            | PRECIPITATION NE                                            | ETWORK           |                |                        |                 |                     |
|----------|---------------------|--------------------------------------------|-------------------------------------------------------------|------------------|----------------|------------------------|-----------------|---------------------|
| SITE     | COMPUTER<br>SITE ID | STATION NAME                               | LOCATION                                                    | OBSERVER         | ELEV-<br>ATION | STATION<br>ESTABLISHED | 15 MIN RECORD   | MEAN<br>ANNUAL (IN) |
| 15E      | CM_015E**           | Hafner NOAA Livermore                      | Wellingham Drive, Livermore                                 | Mr. Ron Hafner   | 480            | 1871 to 2020           | -               | 14.49               |
| 17       | CM_017              | Del Valle Plant                            | 601 East Vallecitos Rd,<br>Livermore                        | ZONE 7           | 640            | 1974                   | 1978 to Present | 15.97               |
| 24       | CM_024              | Patterson Plant                            | Patterson Pass Rd, Livermore                                | ZONE 7           | 680            | 1963                   | 1969 to 2016    | 12.85               |
| 34       | CM_034              | Mocho Wellfield                            | Santa Rita Rd, Pleasanton                                   | ZONE 7           | 340            | 1968                   | 1970 to 2010    | 17.88               |
| 44       | CM_044              | Mt Hamilton                                | Lick Observatory, Mt.<br>Hamilton                           | Lick Observatory | 4209           | 1881                   | -               | 24.34               |
| 101      | CM_101              | Tassajara                                  | Camino Tassajara Rd,<br>Danville                            | Mrs. Joan Hansen | 800            | 1912                   | -               | 18.46               |
| 170      | CM_170              | Parkside                                   | Parkside Drive, Pleasanton                                  | ZONE 7           | 330            | 1986                   | 1986 to 2005    | 20.51               |
| 191      | CM_191              | CIMIS Station                              | Alameda County Fairgrounds<br>Golf Course                   | DWR              | 335            | 2004                   | 2004 to Present | 17.03               |
| ALTC_BD  | CM_ALTC_BD          | Altamont Creek                             | at ALTC_BD surface water station                            | ZONE 7           | 500            | 2015                   | 2015 to Present | 13.26               |
| AMNL     | CM_AMNL             | Arroyo Mocho Near Livermore                | at AMNL surface water station                               | ZONE 7           | 750            | 2015                   | 2015 to Present | 12.80               |
| AMP      | CM_AMP              | Arroyo Mocho Pleaslanton                   | At AMP Surface Water<br>Station                             | ZONE 7           | 335            | 2016                   | 2016 to Present | 12.97               |
| AVBLC    | CM_AVBLC            | Arroyo Valle Below Lang Canyon             | at AVBLC surface water station                              | Alameda County   | 757            | 2016                   | 2016 to Present | -                   |
| KLVK     | CM_KLVK**           | Rain Gauge Lat Livermore Municipal Airport | Livermore Municipal Airport                                 | NOAA             | 395            | 1998                   | -               | -                   |
| LG1_DB   | CM_LG1_DB           | Line G-1 at Dublin BLVD                    | Dublin Blvd and Scarlett Dr,<br>Dublin                      | ZONE 7           | 336            | 2019                   | 2019 to Present | -                   |
| LJ1_BDB  | CM_LJ1_BDB          | Line J-1 Below Dublin BLVD                 | Dublin Doulevard, Dublin                                    | ZONE 7           | 332            | 2019                   | 2019 to Present | -                   |
| NC       | CM_NC               | North Canyons Office                       | Zone 7's North Canyons<br>building<br>Sunor Gien Elementary | ZONE 7           | 450            | 2015                   | 2015 to Present | 12.23               |
| SGE      | CM_SGE              | Rain Gauge at Sunol Glen Elementary School | School at Main St and Bond                                  | ZONE 7           | 253            | 2016                   | 2016 to Present | -                   |
| TC_BI580 | CM_TC_BI580         | Tassajara Creek below I-580                | Old Santa Rita Rd,<br>Pleasanton                            | ZONE 7           | 342            | 2018                   | 2019 to Present | -                   |
|          |                     |                                            | EVAPORATION NET                                             | WORK             |                |                        |                 |                     |
| SITE     | COMPUTER<br>SITE ID | STATION NAME                               | LOCATION                                                    | OBSERVER         | ELEV-<br>ATION | STATION<br>ESTABLISHED | 15 MIN RECORD   | MEAN<br>ANNUAL (IN) |
| LDV      | CM_LDV              | Lake Del Valle                             | Lake Del Valle                                              | DWR              | 760            | 1968                   | -               | 43.18               |
| LWRP     | CM_LWRP             | Livermore Water Reclamation Plant          | Lake Del Valle                                              | LWRP             | 410            | 1974                   | -               | 46.17               |
| 191      | CM_191              | CIMIS Station                              | Alameda County Fairgrounds<br>Golf Course                   | DWR              | 335            | 2004                   | 2004 to Present | 51.29               |

<sup>\*</sup>Stations LDV and LWRP record evaporation using pan evaporation equipment. ETo is derived using: ETo= Pan Evaporation x 0.6402

<sup>\*\*</sup> Livermore Rainfall Index comprises of CM\_015E to June 2020 and CM\_KLVK thereafter.



### **TABLE 2-2 MONTHLY PRECIPITATION DATA 2020 WATER YEAR**

#### MONTHLY PRECIPITATION IN INCHES

|       |       |      |      |      |       |       |       |       | MON  | IITORING ST | ATION |        |         |          |      |       |           | 2020<br>Network | % Historic |
|-------|-------|------|------|------|-------|-------|-------|-------|------|-------------|-------|--------|---------|----------|------|-------|-----------|-----------------|------------|
|       | LRI   | 17   | 24   | 34   | 44    | 101   | 170   | 191   | ALTC | AMNL        | AMP   | AVBLC* | LG1_DB* | LJ1_BDB* | NC   | SGE*  | TC_BI580* | Average         | Average    |
| ОСТ   | 0.00  | 0.00 | 0.00 | 0.00 | 0.08  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00        | 0.00  | 0.00   | 0.00    | 0.00     | 0.00 | 0.00  | 0.00      | 0.00            | 0.5%       |
| NOV   | 0.97  | 1.11 | 0.79 | 0.98 | 1.65  | 0.78  | 1.10  | 0.90  | 0.93 | 0.93        | 0.96  | 1.81   | 1.26    | 1.41     | 0.83 | 1.76  | 1.02      | 1.13            | 61.0%      |
| DEC   | 2.91  | 1.97 | 2.52 | 2.63 | 6.36  | 3.70  | 2.82  | 2.98  | 2.28 | 1.93        | 2.23  | 3.50   | 1.99    | 2.21     | 1.83 | 2.06  | 2.07      | 2.71            | 103.3%     |
| JAN   | 1.05  | 1.19 | 1.00 | 0.98 | 3.12  | 1.19  | 1.46  | 1.02  | 0.96 | 0.82        | 0.78  | 1.20   | 0.88    | 1.10     | 0.97 | 1.36  | 0.77      | 1.17            | 38.1%      |
| FEB   | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00        | 0.00  | 0.00   | 0.00    | 0.00     | 0.00 | 0.00  | 0.00      | 0.00            | 0.0%       |
| MAR   | 2.97  | 2.92 | 2.15 | 2.26 | 6.26  | 1.73  | 2.71  | 2.57  | 2.91 | 1.75        | 1.97  | 3.42   | 1.59    | 1.91     | 2.33 | 3.31  | 1.89      | 2.63            | 93.4%      |
| APR   | 1.72  | 1.96 | 1.31 | 2.02 | 2.94  | 1.62  | 2.48  | 2.14  | 1.50 | 1.43        | 1.81  | 2.50   | 1.78    | 1.98     | 1.69 | 2.45  | 1.81      | 1.95            | 136.1%     |
| MAY   | 0.75  | 0.26 | 0.17 | 0.68 | 2.14  | 1.14  | 1.27  | 1.05  | 0.08 | 0.59        | 0.56  | 0.50   | 1.21    | 0.81     | 0.25 | 0.38  | 0.84      | 0.75            | 147.4%     |
| JUN   | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00        | 0.00  | 0.00   | 0.00    | 0.00     | 0.00 | 0.00  | 0.00      | 0.00            | 0.0%       |
| JUL   | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00        | 0.00  | 0.00   | 0.00    | 0.00     | 0.00 | 0.00  | 0.00      | 0.00            | 0.0%       |
| AUG   | 0.11  | 0.04 | 0.02 | 0.15 | 0.00  | 0.21  | 0.24  | 0.17  | 0.02 | 0.01        | 0.09  | 0.00   | 0.22    | 0.17     | 0.08 | 0.21  | 0.06      | 0.11            | 325.1%     |
| SEP   | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00        | 0.00  | 0.00   | 0.00    | 0.00     | 0.00 | 0.00  | 0.00      | 0.00            | 0.0%       |
| TOTAL | 10.48 | 9.45 | 7.96 | 9.70 | 22.55 | 10.37 | 12.08 | 10.83 | 8.68 | 7.46        | 8.40  | 12.93  | 8.93    | 9.59     | 7.98 | 11.53 | 8.46      | 10.43           |            |
| % AVG | 72%   | 59%  | 62%  | 54%  | 93%   | 56%   | 59%   | 64% > | 65%  | 58%         | 65%   | **     | **      | **       | 65%  | **    | **        | 65%             |            |

Not included in Network Average due to insufficient age

Preliminary Data

#### DISTRIBUTION OF DAILY PRECIPITATION

Number of days with rainfall greater than reference

| Rainfall |    |    |    |    |    |     |     |     | МОМ  | IITORING ST | ATION |       |        |         |    |     |          | 2020<br>Network |
|----------|----|----|----|----|----|-----|-----|-----|------|-------------|-------|-------|--------|---------|----|-----|----------|-----------------|
| (inches) | 15 | 17 | 24 | 34 | 44 | 101 | 170 | 191 | ALTC | AMNL        | AMP   | AVBLC | LG1_DB | LJ1_BDB | NC | SGE | TC_BI580 | Average         |
| >Trace   | 55 | 53 | 50 | 43 | 49 | 63  | 44  | 43  | 49   | 45          | 51    | 59    | 43     | 46      | 49 | 62  | 46       | 50              |
| >0.1     | 20 | 19 | 19 | 24 | 28 | 43  | 25  | 26  | 19   | 20          | 23    | 24    | 23     | 24      | 20 | 28  | 24       | 24              |
| >0.5     | 8  | 6  | 6  | 5  | 4  | 14  | 8   | 7   | 6    | 3           | 6     | 9     | 6      | 6       | 4  | 6   | 5        | 6               |
| >1       | 1  | 1  | 0  | 1  | 1  | 5   | 4   | 2   | 1    | 0           | 0     | 2     | 1      | 1       | 1  | 2   | 0        | 1               |
| >2       | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0    | 0           | 0     | 0     | 0      | 0       | 0  | 0   | 0        | 0               |

Not enough data for average calculation. Livermore Rain Index (CM\_015E to June 2020 and CM\_KLVK thereafter)



# TABLE 2-3 HISTORICAL MONTHLY PRECIPITATION Livermore Rainfall Index (CM\_015/CM\_KLVK) 1871 to 2020 WATER YEARS

| Water Year   | OCTWY        | NOVWY        | DECWY         | JAN           | FEB          | MAR          | APR          | MAY          | JUN          | JUL          | AUG          | SEP          | TOTAL<br>OCT-SEP | TOTAL<br>JULY-JUNE | % AVERAGE<br>OCT-SEP |
|--------------|--------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------------|----------------------|
| 1871         | NA           | NA           | NA            | 1.42          | 1.93         | 0.36         | 1.25         | 0.02         | 0.00         | 0.00         | 0.00         | 0.00         | NA               | NA                 | NA                   |
| 1872<br>1873 | 0.00         | 1.13<br>1.22 | 11.69<br>3.87 | 2.15<br>1.04  | 2.69<br>3.73 | 0.65<br>0.68 | 0.43<br>0.15 | 0.00         | 0.32<br>0.00 | 0.00         | 0.00         | 0.00         | 19.06<br>10.69   | 19.06<br>10.69     | 132%<br>74%          |
| 1874         | 0.42         | 0.70         | 4.48          | 2.96          | 1.03         | 1.34         | 0.95         | 0.32         | 0.06         | 0.00         | 0.00         | 0.30         | 12.56            | 12.26              | 87%                  |
| 1875         | 1.67         | 2.03         | 0.20          | 5.40          | 1.20         | 0.35         | 0.00         | 0.00         | 0.52         | 0.00         | 0.00         | 0.00         | 11.37            | 11.67              | 78%                  |
| 1876<br>1877 | 0.00<br>1.26 | 7.23<br>0.10 | 1.62<br>0.00  | 2.68<br>2.47  | 3.01<br>0.56 | 4.39<br>1.10 | 0.73<br>0.13 | 0.33<br>0.39 | 0.00         | 0.00         | 0.00         | 0.00         | 19.99<br>6.01    | 19.99<br>6.01      | 138%<br>41%          |
| 1878         | 1.27         | 1.29         | 0.73          | 4.61          | 6.73         | 2.01         | 0.96         | 0.06         | 0.00         | 0.00         | 0.00         | 0.00         | 17.66            |                    | 122%                 |
| 1879         | 0.24         | 0.31         | 0.17          | 2.83          | 1.78         | 2.49         | 0.75         | 1.34         | 0.20         | 0.00         | 0.00         | 0.00         | 10.11            | 10.11              | 70%                  |
| 1880<br>1881 | 0.83         | 1.06<br>0.65 | 1.94<br>7.75  | 1.48<br>2.40  | 1.80<br>2.62 | 1.45<br>1.06 | 6.51<br>1.93 | 0.91<br>0.00 | 0.00<br>0.04 | 0.00         | 0.00         | 0.00         | 15.98<br>16.45   | 15.98<br>16.45     | 110%<br>114%         |
| 1882         | 0.08         | 0.78         | 1.97          | 1.07          | 1.72         | 4.85         | 1.03         | 0.20         | 0.00         | 0.00         | 0.00         | 0.34         | 12.04            | 11.70              | 83%                  |
| 1883         | 1.52         | 1.48         | 0.38          | 2.38          | 0.63         | 3.45         | 1.50         | 2.18         | 0.00         | 0.00         | 0.00         | 0.35         | 13.87            | 13.86              | 96%                  |
| 1884<br>1885 | 1.52<br>1.14 | 0.57<br>0.02 | 0.44<br>6.22  | 4.03<br>1.72  | 5.29<br>0.36 | 5.92<br>0.78 | 2.70<br>1.29 | 0.20<br>0.08 | 1.73<br>0.00 | 0.00         | 0.10<br>0.00 | 0.30<br>0.05 | 22.80<br>11.66   | 22.75<br>12.01     | 157%<br>80%          |
| 1886         | 0.00         | 6.20         | 1.94          | 4.20          | 0.24         | 1.18         | 2.36         | 0.00         | 0.00         | 0.40         | 0.00         | 0.00         | 16.52            | 16.17              | 114%                 |
| 1887         | 0.30         | 0.70         | 0.81          | 0.90          | 6.23         | 0.23         | 1.60         | 0.00         | 0.00         | 0.00         | 0.00         | 0.80         | 11.57            | 11.17              | 80%                  |
| 1888<br>1889 | 0.00         | 0.61<br>3.80 | 3.51<br>2.21  | 3.20<br>0.46  | 0.94<br>0.67 | 2.51<br>5.15 | 0.60<br>0.51 | 0.66<br>2.25 | 0.30<br>0.00 | 0.00         | 0.00         | 0.76<br>0.00 | 13.09<br>15.05   | 13.13<br>15.81     | 90%<br>104%          |
| 1890         | 3.94         | 2.95         | 8.63          | 5.24          | 3.71         | 2.85         | 0.86         | 0.48         | 0.00         | 0.00         | 0.00         | 1.20         | 29.86            | 28.66              | 206%                 |
| 1891         | 0.00         | 0.00         | 3.31          | 0.54          | 4.18         | 2.50         | 1.88         | 0.40         | 0.15         | 0.00         | 0.00         | 1.32         | 14.28            | 14.16              | 99%                  |
| 1892<br>1893 | 0.05<br>1.65 | 0.38<br>4.97 | 4.42<br>7.27  | 0.84<br>3.02  | 1.08<br>3.12 | 3.96<br>3.68 | 0.90<br>1.40 | 1.30<br>0.73 | 0.00         | 0.00         | 0.00         | 0.45<br>0.00 | 13.38<br>25.84   | 14.25<br>26.29     | 92%<br>178%          |
| 1894         | 0.00         | 1.59         | 2.14          | 4.97          | 5.36         | 0.81         | 0.58         | 1.19         | 0.52         | 0.00         | 0.00         | 1.45         | 18.61            | 17.16              | 128%                 |
| 1895         | 1.15         | 0.50         | 8.56          | 6.83          | 1.56         | 1.81         | 1.26         | 1.25         | 0.00         | 0.00         | 0.00         | 0.22         | 23.14            | 24.37              | 160%                 |
| 1896<br>1897 | 0.83<br>1.48 | 1.69<br>3.02 | 1.28<br>1.71  | 7.16<br>1.89  | 0.17<br>3.54 | 1.50<br>4.04 | 3.11<br>0.24 | 0.39<br>0.00 | 0.00<br>0.08 | 0.00         | 0.73<br>0.00 | 0.55<br>0.06 | 17.41<br>16.06   | 16.35<br>17.28     | 120%<br>111%         |
| 1898         | 1.43         | 0.52         | 1.31          | 1.47          | 1.78         | 0.78         | 0.45         | 0.96         | 0.35         | 0.00         | 0.00         | 0.95         | 10.00            | 9.11               | 69%                  |
| 1899         | 0.74         | 0.25         | 1.61          | 2.60          | 0.08         | 4.81         | 0.35         | 0.15         | 0.22         | 0.00         | 0.00         | 0.00         | 10.81            | 11.76              | 75%                  |
| 1900<br>1901 | 2.52<br>1.93 | 2.49<br>4.48 | 2.07<br>1.06  | 2.44<br>2.69  | 0.34<br>5.15 | 1.11<br>0.95 | 0.86<br>1.80 | 1.10<br>1.58 | 0.00         | 0.00         | 0.00         | 0.18<br>0.68 | 13.11<br>20.32   | 12.93<br>19.82     | 90%<br>140%          |
| 1902         | 0.70         | 1.99         | 0.74          | 0.99          | 3.62         | 2.69         | 0.75         | 0.32         | 0.00         | 0.00         | 0.13         | 0.00         | 11.93            |                    | 82%                  |
| 1903         | 0.47         | 2.07         | 0.87          | 3.19          | 0.94         | 5.65         | 0.81         | 0.12         | 0.00         | 0.00         | 0.00         | 0.00         | 14.12            |                    | 97%                  |
| 1904<br>1905 | 0.00<br>1.00 | 2.16<br>0.78 | 0.59<br>1.42  | 0.89<br>2.43  | 4.18<br>2.30 | 3.71<br>3.12 | 1.56<br>0.93 | 0.24<br>1.89 | 0.00         | 0.00         | 0.32         | 1.62<br>0.00 | 15.27<br>13.87   | 13.33<br>15.81     | 105%<br>96%          |
| 1906         | 0.00         | 1.01         | 1.18          | 5.56          | 2.67         | 5.18         | 0.95         | 1.61         | 0.56         | 0.00         | 0.00         | 0.20         | 18.92            | 18.72              | 131%                 |
| 1907         | 0.03         | 1.34         | 6.45          | 3.22          | 1.86         | 8.85         | 0.47         | 0.16         | 0.56         | 0.00         | 0.00         | 0.00         | 22.94            | 23.14              | 158%                 |
| 1908<br>1909 | 0.81<br>0.27 | 0.04<br>0.60 | 3.90<br>1.55  | 2.27<br>10.18 | 1.35<br>3.96 | 0.73<br>1.94 | 0.28<br>0.00 | 0.53<br>0.00 | 0.00<br>0.05 | 0.00         | 0.00         | 0.03<br>0.62 | 9.94<br>19.17    | 9.91<br>18.58      | 69%<br>132%          |
| 1910         | 0.75         | 1.68         | 5.77          | 2.50          | 1.14         | 1.90         | 0.10         | 0.00         | 0.04         | 0.00         | 0.00         | 0.10         | 13.98            | 14.50              | 96%                  |
| 1911         | 0.29         | 0.10         | 1.32          | 12.60         | 1.42         | 4.45         | 0.69         | 0.24         | 0.07         | 0.00         | 0.00         | 0.00         | 21.18            | 21.28              | 146%                 |
| 1912<br>1913 | 0.43<br>0.71 | 0.29<br>0.44 | 1.71<br>0.81  | 2.66<br>2.63  | 0.20<br>0.38 | 1.99<br>1.65 | 0.73<br>0.54 | 0.94<br>0.58 | 0.65<br>0.01 | 0.00<br>0.27 | 0.00<br>0.02 | 0.48<br>0.00 | 10.08<br>8.04    | 9.60<br>8.23       | 70%<br>55%           |
| 1914         | 0.00         | 2.47         | 3.17          | 7.10          | 2.11         | 0.66         | 0.76         | 0.45         | 0.19         | 0.00         | 0.00         | 0.00         | 16.91            | 17.20              | 117%                 |
| 1915         | 0.45         | 0.33         | 3.96          | 4.16          | 5.79         | 1.50         | 0.66         | 2.66         | 0.00         | 0.00         | 0.00         | 0.00         | 19.51            | 19.51              | 135%                 |
| 1916<br>1917 | 0.00<br>0.50 | 0.76<br>0.68 | 4.41<br>3.28  | 11.35<br>1.06 | 2.17<br>3.37 | 1.47<br>1.08 | 0.21<br>0.15 | 0.05<br>0.02 | 0.00         | 0.00         | 0.00         | 0.44<br>0.04 | 20.86<br>10.18   | 20.42<br>10.58     | 144%<br>70%          |
| 1918         | 0.00         | 0.43         | 0.66          | 0.59          | 3.08         | 3.32         | 0.61         | 0.00         | 0.00         | 0.00         | 0.00         | 5.72         | 14.41            | 8.73               | 99%                  |
| 1919         | 0.39         | 2.38         | 1.51          | 1.03          | 4.58         | 2.33         | 0.05         | 0.00         | 0.00         | 0.00         | 0.00         | 0.48         | 12.75            | 17.99              | 88%                  |
| 1920<br>1921 | 0.15<br>2.03 | 0.33<br>1.43 | 2.21<br>3.81  | 0.22<br>3.38  | 0.71<br>0.59 | 3.52<br>0.83 | 1.07<br>0.16 | 0.00<br>1.05 | 0.13<br>0.00 | 0.00         | 0.00         | 0.00<br>0.05 | 8.34<br>13.33    | 8.82<br>13.28      | 58%<br>92%           |
| 1922         | 0.15         | 1.17         | 3.38          | 1.51          | 5.46         | 1.83         | 0.23         | 0.27         | 0.00         | 0.00         | 0.00         | 0.00         | 14.00            | 14.05              | 97%                  |
| 1923         | 0.54         | 2.86         | 5.43          | 1.80          | 0.65         | 0.15         | 2.15         | 0.00         | 0.02         | 0.00         | 0.00         | 0.82         | 14.42            |                    | 100%                 |
| 1924<br>1925 | 0.25<br>1.30 | 0.76<br>1.53 | 0.87<br>2.63  | 1.40<br>1.02  | 0.93<br>3.74 | 0.65<br>1.14 | 0.28<br>1.75 | 0.07<br>1.41 | 0.00<br>0.04 | 0.00         | 0.00         | 0.00         | 5.21<br>14.56    | 6.03<br>14.56      | 36%<br>100%          |
| 1926         | 0.00         | 0.97         | 1.14          | 2.44          | 3.58         | 0.16         | 3.11         | 0.11         | 0.00         | 0.00         | 0.00         | 0.00         | 11.51            | 11.51              | 79%                  |
| 1927         | 0.93         | 2.83         | 0.78          | 1.74          | 3.49         | 1.54         | 1.73         | 0.10         | 0.18         | 0.00         | 0.00         | 0.03         | 13.35            | 13.32              | 92%                  |
| 1928<br>1929 | 1.71<br>0.00 | 1.43<br>2.57 | 2.00<br>2.76  | 1.46<br>1.26  | 0.89<br>0.87 | 3.43<br>1.07 | 1.43<br>0.70 | 0.45<br>0.03 | 0.00<br>0.83 | 0.00         | 0.00         | 0.00         | 12.80<br>10.09   | 12.83<br>10.09     | 88%<br>70%           |
| 1930         | 0.01         | 0.00         | 1.81          | 3.64          | 1.91         | 1.88         | 1.14         | 0.43         | 0.00         | 0.00         | 0.00         | 0.20         | 11.02            | 10.82              | 76%                  |
| 1931         | 0.58         | 1.15         | 0.26          | 3.45          | 1.67         | 0.57         | 0.36         | 0.93         | 0.11         | 0.00         | 0.00         | 0.00         | 9.08             | 9.28               | 63%                  |
| 1932<br>1933 | 0.27<br>0.00 | 1.89<br>0.51 | 5.63<br>2.03  | 1.29<br>4.51  | 3.15<br>0.44 | 0.19<br>2.09 | 0.41<br>0.13 | 0.37<br>0.70 | 0.00         | 0.00         | 0.00         | 0.00<br>0.01 | 13.20<br>10.45   | 13.20<br>10.44     | 91%<br>72%           |
| 1934         | 0.75         | 0.00         | 3.69          | 1.29          | 2.86         | 0.00         | 0.13         | 0.60         | 0.53         | 0.00         | 0.00         | 0.27         | 10.12            | 9.86               | 70%                  |
| 1935         | 0.62         | 2.71         | 2.32          | 3.53          | 0.52         | 3.16         | 3.28         | 0.00         | 0.00         | 0.00         | 0.04         | 0.00         | 16.18            |                    | 112%                 |
| 1936<br>1937 | 0.79<br>0.40 | 0.21<br>0.02 | 1.53<br>3.26  | 3.28<br>3.38  | 6.76<br>4.13 | 0.71<br>5.07 | 0.63<br>0.68 | 0.46<br>0.17 | 0.10<br>0.20 | 0.00         | 0.00         | 0.00         | 14.47<br>17.31   | 14.51<br>17.31     | 100%<br>119%         |
| 1938         | 0.55         | 2.46         | 4.57          | 2.40          | 6.14         | 4.09         | 0.90         | 0.02         | 0.00         | 0.00         | 0.00         | 0.00         | 21.13            | 21.13              | 146%                 |
| 1939         | 1.00         | 1.08         | 0.52          | 2.40          | 1.57         | 2.18         | 0.53         | 0.18         | 0.00         | 0.00         | 0.00         | 0.16         | 9.62             | 9.46               | 66%                  |
| 1940<br>1941 | 1.23<br>0.50 | 0.15<br>0.43 | 0.78<br>4.63  | 8.13<br>3.24  | 5.14<br>4.19 | 2.60<br>2.07 | 0.35<br>2.76 | 0.14<br>0.23 | 0.00         | 0.00         | 0.00         | 0.25<br>0.00 | 18.77<br>18.08   | 18.68<br>18.30     | 130%<br>125%         |
| 1942         | 0.72         | 0.89         | 5.34          | 3.89          | 1.68         | 1.42         | 3.10         | 1.00         | 0.00         | 0.00         | 0.00         | 0.09         | 18.13            |                    | 125%                 |
| 1943         | 1.08         | 3.05         | 1.73          | 4.48          | 1.68         | 2.39         | 1.14         | 0.00         | 0.06         | 0.00         | 0.00         | 0.00         | 15.61            | 15.70              | 108%                 |
| 1944<br>1945 | 0.30<br>0.77 | 0.53<br>3.41 | 1.23<br>2.03  | 2.36<br>0.87  | 4.89<br>3.68 | 1.01<br>3.19 | 0.94<br>0.20 | 0.73<br>0.17 | 0.00         | 0.00         | 0.00<br>0.02 | 0.00         | 11.99<br>14.34   | 11.99<br>14.32     | 83%<br>99%           |
| 1945         | 1.07         | 2.07         | 2.03          | 0.87          | 1.23         | 1.69         | 0.20         | 0.17         | 0.00         | 0.00         | 0.02         | 0.00         | 10.69            |                    | 74%                  |
| 1947         | 0.02         | 2.93         | 2.07          | 0.69          | 1.45         | 2.34         | 0.53         | 0.17         | 0.36         | 0.00         | 0.00         | 0.00         | 10.56            | 10.82              | 73%                  |
| 1948         | 1.84         | 0.85<br>0.34 | 0.51<br>2.71  | 0.20<br>1.39  | 1.11<br>2.47 | 2.79<br>3.38 | 2.50<br>0.02 | 1.03<br>0.34 | 0.16<br>0.00 | 0.03         | 0.00<br>0.16 | 0.00<br>0.05 | 11.02<br>11.35   |                    | 76%<br>78%           |



# TABLE 2-3 HISTORICAL MONTHLY PRECIPITATION Livermore Rainfall Index (CM\_015/CM\_KLVK) 1871 to 2020 WATER YEARS

| Water Year                                                                                   | OCTWY                                                                                | NOVWY                                                                                | DECWY                                                                                | JAN                                                                                  | FEB                                                                                  | MAR                                                                                  | APR                                                                          | MAY                                                                          | JUN                                                                  | JUL                                                         | AUG                                                          | SEP                                                                          | TOTAL<br>OCT-SEP                                                            | TOTAL<br>JULY-JUNE                                                                   | % AVERAGE<br>OCT-SEP                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1950                                                                                         | 0.08                                                                                 | 1.20                                                                                 | 1.21                                                                                 | 4.65                                                                                 | 1.54                                                                                 | 1.44                                                                                 | 0.85                                                                         | 0.59                                                                         | 0.01                                                                 | 0.00                                                        | 0.00                                                         | 0.08                                                                         | 11.65                                                                       | 11.81                                                                                | 80%                                                             |
| 1951                                                                                         | 1.84                                                                                 | 5.95                                                                                 | 4.95                                                                                 | 2.23                                                                                 | 1.81                                                                                 | 1.82                                                                                 | 0.55                                                                         | 0.35                                                                         | 0.06                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 19.56                                                                       | 19.64                                                                                | 135%                                                            |
| 1952<br>1953                                                                                 | 1.04<br>0.01                                                                         | 3.01<br>2.11                                                                         | 6.07<br>6.33                                                                         | 7.60<br>2.07                                                                         | 1.40<br>0.05                                                                         | 2.36<br>1.12                                                                         | 2.20<br>1.42                                                                 | 0.16<br>0.61                                                                 | 0.04<br>0.59                                                         | 0.00                                                        | 0.00<br>0.15                                                 | 0.10<br>0.00                                                                 | 23.98<br>14.46                                                              | 23.88<br>14.41                                                                       | 165%<br>100%                                                    |
| 1954                                                                                         | 0.21                                                                                 | 1.33                                                                                 | 0.64                                                                                 | 2.19                                                                                 | 2.27                                                                                 | 3.00                                                                                 | 0.73                                                                         | 0.16                                                                         | 0.27                                                                 | 0.00                                                        | 0.00                                                         | 0.04                                                                         | 10.84                                                                       | 10.95                                                                                | 75%                                                             |
| 1955                                                                                         | 0.00                                                                                 | 1.68                                                                                 | 3.33                                                                                 | 2.45                                                                                 | 1.69                                                                                 | 0.38                                                                                 | 1.28                                                                         | 0.65                                                                         | 0.00                                                                 | 0.00                                                        | 0.01                                                         | 0.01                                                                         | 11.48                                                                       | 11.50                                                                                | 79%                                                             |
| 1956                                                                                         | 0.01                                                                                 | 1.31                                                                                 | 10.15                                                                                | 5.49                                                                                 | 1.15                                                                                 | 0.14                                                                                 | 1.92                                                                         | 0.63                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.63                                                                         | 21.43                                                                       | 20.82                                                                                | 148%                                                            |
| 1957<br>1958                                                                                 | 0.79<br>1.06                                                                         | 0.03<br>0.37                                                                         | 0.48<br>1.62                                                                         | 2.65<br>3.16                                                                         | 2.23<br>5.37                                                                         | 1.30<br>4.44                                                                         | 1.14<br>3.74                                                                 | 2.65<br>0.66                                                                 | 0.04<br>0.41                                                         | 0.00                                                        | 0.00                                                         | 0.05<br>0.02                                                                 | 11.36<br>20.85                                                              | 11.94<br>20.88                                                                       | 78%<br>144%                                                     |
| 1959                                                                                         | 0.09                                                                                 | 0.37                                                                                 | 0.86                                                                                 | 2.45                                                                                 | 3.59                                                                                 | 0.29                                                                                 | 0.35                                                                         | 0.00                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 1.89                                                                         | 9.73                                                                        | 7.79                                                                                 | 67%                                                             |
| 1960                                                                                         | 0.00                                                                                 | 0.00                                                                                 | 0.75                                                                                 | 2.98                                                                                 | 4.12                                                                                 | 0.60                                                                                 | 0.48                                                                         | 0.42                                                                         | 0.00                                                                 | 0.02                                                        | 0.00                                                         | 0.01                                                                         | 9.38                                                                        | 11.31                                                                                | 65%                                                             |
| 1961                                                                                         | 0.05                                                                                 | 2.92                                                                                 | 1.25                                                                                 | 2.08                                                                                 | 1.04                                                                                 | 1.92                                                                                 | 1.03                                                                         | 0.69                                                                         | 0.19                                                                 | 0.00                                                        | 0.13                                                         | 0.16                                                                         | 11.46                                                                       | 11.20                                                                                | 79%                                                             |
| 1962<br>1963                                                                                 | 0.15<br>3.64                                                                         | 2.24<br>0.28                                                                         | 0.82<br>1.55                                                                         | 0.73<br>1.40                                                                         | 5.61<br>4.50                                                                         | 1.82<br>2.60                                                                         | 0.22<br>3.47                                                                 | 0.00<br>0.70                                                                 | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00<br>0.33                                                                 | 11.59<br>18.47                                                              | 11.88<br>18.14                                                                       | 80%<br>127%                                                     |
| 1964                                                                                         | 0.93                                                                                 | 3.18                                                                                 | 0.19                                                                                 | 2.37                                                                                 | 0.08                                                                                 | 1.57                                                                                 | 0.21                                                                         | 0.70                                                                         | 0.32                                                                 | 0.00                                                        | 0.00                                                         | 0.04                                                                         | 9.49                                                                        | 9.66                                                                                 | 65%                                                             |
| 1965                                                                                         | 0.85                                                                                 | 2.44                                                                                 | 4.91                                                                                 | 2.11                                                                                 | 0.59                                                                                 | 1.73                                                                                 | 1.53                                                                         | 0.00                                                                         | 0.00                                                                 | 0.00                                                        | 0.21                                                         | 0.00                                                                         | 14.37                                                                       | 14.32                                                                                | 99%                                                             |
| 1966                                                                                         | 0.03                                                                                 | 4.22                                                                                 | 3.23                                                                                 | 1.05                                                                                 | 1.17                                                                                 | 0.17                                                                                 | 0.33                                                                         | 0.10                                                                         | 0.12                                                                 | 0.17                                                        | 0.00                                                         | 0.11                                                                         | 10.70                                                                       | 10.63                                                                                | 74%                                                             |
| 1967<br>1968                                                                                 | 0.00<br>0.24                                                                         | 3.43<br>0.88                                                                         | 2.35<br>1.62                                                                         | 6.14                                                                                 | 0.29<br>0.90                                                                         | 4.15<br>2.40                                                                         | 4.65<br>0.43                                                                 | 0.19<br>0.15                                                                 | 0.48<br>0.00                                                         | 0.00                                                        | 0.00                                                         | 0.02                                                                         | 21.70<br>10.55                                                              | 21.96                                                                                | 150%                                                            |
| 1969                                                                                         | 0.24                                                                                 | 2.48                                                                                 | 3.04                                                                                 | 3.93<br>6.28                                                                         | 4.76                                                                                 | 0.55                                                                                 | 1.24                                                                         | 0.13                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 18.86                                                                       | 10.57<br>18.86                                                                       | 73%<br>130%                                                     |
| 1970                                                                                         | 1.10                                                                                 | 0.49                                                                                 | 2.34                                                                                 | 5.38                                                                                 | 1.18                                                                                 | 1.42                                                                                 | 0.40                                                                         | 0.07                                                                         | 0.32                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 12.70                                                                       | 12.70                                                                                | 88%                                                             |
| 1971                                                                                         | 0.41                                                                                 | 5.24                                                                                 | 5.27                                                                                 | 1.19                                                                                 | 0.33                                                                                 | 1.75                                                                                 | 1.37                                                                         | 0.54                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.13                                                                         | 16.23                                                                       | 16.10                                                                                | 112%                                                            |
| 1972                                                                                         | 0.04                                                                                 | 0.46                                                                                 | 3.27                                                                                 | 0.90                                                                                 | 0.79                                                                                 | 0.14                                                                                 | 0.64                                                                         | 0.00                                                                         | 0.04                                                                 | 0.00                                                        | 0.00                                                         | 0.58                                                                         | 6.86                                                                        | 6.41                                                                                 | 47%                                                             |
| 1973<br>1974                                                                                 | 2.98<br>2.08                                                                         | 4.91<br>3.71                                                                         | 2.22<br>3.80                                                                         | 5.50<br>1.50                                                                         | 3.38<br>0.71                                                                         | 2.63<br>2.69                                                                         | 0.29<br>1.62                                                                 | 0.03                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.08                                                                         | 22.02<br>16.11                                                              | 22.52<br>16.19                                                                       | 152%<br>111%                                                    |
| 1975                                                                                         | 0.50                                                                                 | 0.66                                                                                 | 1.98                                                                                 | 0.84                                                                                 | 3.65                                                                                 | 5.24                                                                                 | 1.42                                                                         | 0.00                                                                         | 0.06                                                                 | 0.10                                                        | 0.35                                                         | 0.00                                                                         | 14.80                                                                       | 14.35                                                                                | 102%                                                            |
| 1976                                                                                         | 1.27                                                                                 | 0.08                                                                                 | 0.21                                                                                 | 0.30                                                                                 | 1.46                                                                                 | 0.48                                                                                 | 0.39                                                                         | 0.00                                                                         | 0.18                                                                 | 0.00                                                        | 0.91                                                         | 0.95                                                                         | 6.23                                                                        | 4.82                                                                                 | 43%                                                             |
| 1977                                                                                         | 0.50                                                                                 | 0.50                                                                                 | 0.73                                                                                 | 1.15                                                                                 | 0.83                                                                                 | 0.82                                                                                 | 0.16                                                                         | 1.01                                                                         | 0.00                                                                 | 0.10                                                        | 0.00                                                         | 0.22                                                                         | 6.02                                                                        | 7.56                                                                                 | 42%                                                             |
| 1978<br>1979                                                                                 | 0.13<br>0.00                                                                         | 1.34<br>2.16                                                                         | 3.07<br>0.58                                                                         | 5.44<br>4.52                                                                         | 2.95<br>3.19                                                                         | 3.07<br>1.86                                                                         | 2.49<br>0.88                                                                 | 0.01<br>0.34                                                                 | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.04                                                                         | 18.54<br>13.59                                                              | 18.82<br>13.57                                                                       | 128%<br>94%                                                     |
| 1980                                                                                         | 1.51                                                                                 | 1.13                                                                                 | 2.66                                                                                 | 4.16                                                                                 | 4.24                                                                                 | 1.36                                                                                 | 1.32                                                                         | 0.48                                                                         | 0.00                                                                 | 0.70                                                        | 0.00                                                         | 0.00                                                                         | 17.56                                                                       | 16.92                                                                                | 121%                                                            |
| 1981                                                                                         | 0.04                                                                                 | 0.28                                                                                 | 1.18                                                                                 | 3.97                                                                                 | 1.11                                                                                 | 2.94                                                                                 | 0.61                                                                         | 0.11                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.06                                                                         | 10.30                                                                       | 10.94                                                                                | 71%                                                             |
| 1982                                                                                         | 2.07                                                                                 | 3.44                                                                                 | 2.57                                                                                 | 5.29                                                                                 | 2.16                                                                                 | 5.58                                                                                 | 1.50                                                                         | 0.00                                                                         | 0.28                                                                 | 0.00                                                        | 0.01                                                         | 1.48                                                                         | 24.38                                                                       | 22.95                                                                                | 168%                                                            |
| 1983<br>1984                                                                                 | 2.24<br>0.27                                                                         | 3.72<br>5.44                                                                         | 2.80<br>3.44                                                                         | 6.28<br>0.33                                                                         | 5.56<br>1.87                                                                         | 6.14<br>1.00                                                                         | 3.51<br>0.53                                                                 | 0.21<br>0.01                                                                 | 0.00                                                                 | 0.00                                                        | 0.50<br>0.00                                                 | 1.02<br>0.04                                                                 | 31.98<br>12.96                                                              | 31.95<br>14.44                                                                       | 221%<br>89%                                                     |
| 1985                                                                                         | 1.25                                                                                 | 4.71                                                                                 | 1.51                                                                                 | 0.33                                                                                 | 1.25                                                                                 | 2.62                                                                                 | 0.33                                                                         | 0.07                                                                         | 0.03                                                                 | 0.00                                                        | 0.00                                                         | 0.04                                                                         | 12.59                                                                       | 12.47                                                                                | 87%                                                             |
| 1986                                                                                         | 0.89                                                                                 | 2.69                                                                                 | 1.97                                                                                 | 2.04                                                                                 | 7.11                                                                                 | 4.09                                                                                 | 0.40                                                                         | 0.14                                                                         | 0.00                                                                 | 0.01                                                        | 0.00                                                         | 0.45                                                                         | 19.79                                                                       | 19.49                                                                                | 137%                                                            |
| 1987                                                                                         | 0.04                                                                                 | 0.08                                                                                 | 0.92                                                                                 | 1.83                                                                                 | 3.47                                                                                 | 2.30                                                                                 | 0.16                                                                         | 0.09                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 8.89                                                                        | 9.35                                                                                 | 61%                                                             |
| 1988<br>1989                                                                                 | 0.87<br>0.11                                                                         | 1.40<br>1.92                                                                         | 2.30<br>2.03                                                                         | 1.78<br>0.81                                                                         | 0.38<br>0.95                                                                         | 0.26<br>2.94                                                                         | 1.15<br>0.88                                                                 | 0.45<br>0.08                                                                 | 0.10<br>0.10                                                         | 0.00                                                        | 0.00                                                         | 0.00<br>1.33                                                                 | 8.69<br>11.15                                                               | 8.69<br>9.82                                                                         | 60%<br>77%                                                      |
| 1990                                                                                         | 1.13                                                                                 | 1.02                                                                                 | 0.10                                                                                 | 1.54                                                                                 | 2.46                                                                                 | 0.87                                                                                 | 0.37                                                                         | 1.78                                                                         | 0.00                                                                 | 0.02                                                        | 0.00                                                         | 0.06                                                                         | 9.35                                                                        | 10.60                                                                                | 65%                                                             |
| 1991                                                                                         | 0.08                                                                                 | 0.39                                                                                 | 1.45                                                                                 | 0.31                                                                                 | 2.20                                                                                 | 5.87                                                                                 | 0.34                                                                         | 0.35                                                                         | 0.08                                                                 | 0.00                                                        | 0.21                                                         | 0.04                                                                         | 11.32                                                                       | 11.15                                                                                | 78%                                                             |
| 1992                                                                                         | 1.65                                                                                 | 0.31                                                                                 | 1.19                                                                                 | 1.39                                                                                 | 4.61                                                                                 | 1.97                                                                                 | 0.43                                                                         | 0.00                                                                         | 0.09                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 11.64                                                                       | 11.89                                                                                | 80%                                                             |
| 1993<br>1994                                                                                 | 0.90<br>0.57                                                                         | 0.15<br>2.00                                                                         | 4.99<br>1.81                                                                         | 6.41<br>0.94                                                                         | 4.53<br>3.33                                                                         | 2.91<br>0.15                                                                         | 0.63<br>1.20                                                                 | 0.51<br>1.78                                                                 | 0.30<br>0.04                                                         | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 21.33<br>11.82                                                              | 21.33<br>11.82                                                                       | 147%<br>82%                                                     |
| 1995                                                                                         | 0.58                                                                                 | 3.08                                                                                 | 1.36                                                                                 | 6.64                                                                                 | 0.33                                                                                 | 6.66                                                                                 | 1.02                                                                         | 0.92                                                                         | 0.70                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 21.29                                                                       | 21.29                                                                                | 147%                                                            |
| 1996                                                                                         | 0.00                                                                                 | 0.01                                                                                 | 5.37                                                                                 | 5.17                                                                                 | 4.10                                                                                 | 2.34                                                                                 | 1.91                                                                         | 1.05                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 19.95                                                                       | 19.95                                                                                | 138%                                                            |
| 1997                                                                                         | 1.08                                                                                 | 2.55                                                                                 | 4.43                                                                                 | 5.81                                                                                 | 0.15                                                                                 | 0.06                                                                                 | 0.15                                                                         | 0.29                                                                         | 0.17                                                                 | 0.00                                                        | 0.42                                                         | 0.00                                                                         | 15.11                                                                       | 14.69                                                                                | 104%                                                            |
| 1998<br>1999                                                                                 | 0.28<br>0.54                                                                         | 4.23<br>2.48                                                                         | 1.95<br>0.73                                                                         | 5.47<br>3.23                                                                         | 7.30<br>3.33                                                                         | 2.37<br>1.67                                                                         | 1.37<br>0.99                                                                 | 2.00<br>0.08                                                                 | 0.13<br>0.01                                                         | 0.00                                                        | 0.00                                                         | 0.18<br>0.04                                                                 | 25.28<br>13.13                                                              | 25.52<br>13.24                                                                       | 174%<br>91%                                                     |
| 2000                                                                                         | 0.54                                                                                 | 1.26                                                                                 | 0.73                                                                                 | 4.61                                                                                 | 4.87                                                                                 | 1.07                                                                                 | 0.59                                                                         | 0.69                                                                         | 0.01                                                                 | 0.00                                                        | 0.03                                                         | 0.04                                                                         | 14.10                                                                       | 13.24                                                                                | 97%                                                             |
| 2001                                                                                         | 1.97                                                                                 | 0.49                                                                                 | 0.45                                                                                 | 1.92                                                                                 | 2.89                                                                                 | 1.22                                                                                 | 1.80                                                                         | 0.00                                                                         | 0.12                                                                 | 0.00                                                        | 0.00                                                         | 0.09                                                                         | 10.95                                                                       | 11.11                                                                                | 76%                                                             |
| 2002                                                                                         | 0.37                                                                                 | 1.92                                                                                 | 5.09                                                                                 | 0.72                                                                                 | 0.62                                                                                 | 1.65                                                                                 | 0.16                                                                         | 0.68                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 11.21                                                                       | 11.30                                                                                | 77%                                                             |
| 2003<br>2004                                                                                 | 0.00<br>0.02                                                                         | 2.65<br>2.02                                                                         | 7.01<br>3.57                                                                         | 0.66<br>2.19                                                                         | 1.31<br>4.01                                                                         | 1.07<br>0.39                                                                         | 3.09<br>0.18                                                                 | 0.95<br>0.11                                                                 | 0.00                                                                 | 0.00                                                        | 0.29<br>0.00                                                 | 0.00<br>0.58                                                                 | 17.03<br>13.07                                                              | 16.74<br>12.78                                                                       | 118%<br>90%                                                     |
| 2004                                                                                         | 2.77                                                                                 | 0.89                                                                                 | 3.01                                                                                 | 2.19                                                                                 | 3.55                                                                                 | 3.41                                                                                 | 1.53                                                                         | 1.03                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.56                                                                         | 19.30                                                                       | 12.78                                                                                | 133%                                                            |
| 2006                                                                                         |                                                                                      | 0.65                                                                                 | 5.40                                                                                 | 2.22                                                                                 | 1.32                                                                                 | 4.79                                                                                 | 2.60                                                                         | 0.34                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 17.49                                                                       | 17.74                                                                                | 121%                                                            |
| 2007                                                                                         | 0.20                                                                                 | 1.68                                                                                 | 2.25                                                                                 | 0.52                                                                                 | 3.92                                                                                 | 0.33                                                                                 | 0.44                                                                         | 0.11                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.21                                                                         | 9.66                                                                        | 9.45                                                                                 | 67%                                                             |
|                                                                                              | 1.12                                                                                 | 0.71                                                                                 | 2.05                                                                                 | 4.79                                                                                 | 1.89<br>3.31                                                                         | 0.10<br>2.29                                                                         | 0.02<br>0.23                                                                 | 0.00<br>0.51                                                                 | 0.00<br>0.11                                                         | 0.00                                                        | 0.00                                                         | 0.00<br>0.31                                                                 | 10.68<br>11.39                                                              | 10.89<br>11.08                                                                       | 74%<br>79%                                                      |
| 2008                                                                                         |                                                                                      | 1 10                                                                                 |                                                                                      |                                                                                      |                                                                                      |                                                                                      | 0.23                                                                         |                                                                              |                                                                      | 0.00                                                        | 0.00                                                         |                                                                              | 11.59                                                                       | 11.08                                                                                |                                                                 |
| 2008<br>2009<br>2010                                                                         | 0.33                                                                                 | 1.40<br>0.21                                                                         | 1.56<br>2.02                                                                         | 1.34<br>3.53                                                                         | 2.36                                                                                 | 1.57                                                                                 | 2.10                                                                         | 0.24                                                                         | 0.00                                                                 | 0.00                                                        | 0.00                                                         | 0.00                                                                         | 14.82                                                                       | 15.13                                                                                | 102%                                                            |
| 2009                                                                                         | 0.33                                                                                 |                                                                                      |                                                                                      |                                                                                      |                                                                                      |                                                                                      | 2.10<br>0.22                                                                 | 0.24<br>0.46                                                                 | 0.00<br>1.07                                                         | 0.00<br>0.00                                                | 0.00<br>0.00                                                 | 0.00                                                                         | 14.82<br>16.21                                                              | 16.21                                                                                | 102%                                                            |
| 2009<br>2010<br>2011<br>2012                                                                 | 0.33<br>2.79<br>1.00<br>1.06                                                         | 0.21<br>2.02<br>0.93                                                                 | 2.02<br>3.87<br>0.04                                                                 | 3.53<br>0.78<br>1.52                                                                 | 2.36<br>2.69<br>0.52                                                                 | 1.57<br>4.10<br>2.57                                                                 | 0.22<br>2.01                                                                 | 0.46<br>0.02                                                                 | 1.07<br>0.12                                                         | 0.00<br>0.00                                                | 0.00<br>0.00                                                 | 0.00<br>0.01                                                                 | 16.21<br>8.80                                                               | 16.21<br>8.79                                                                        | 112%<br>61%                                                     |
| 2009<br>2010<br>2011<br>2012<br>2013                                                         | 0.33<br>2.79<br>1.00<br>1.06<br>0.27                                                 | 0.21<br>2.02<br>0.93<br>3.40                                                         | 2.02<br>3.87<br>0.04<br>4.22                                                         | 3.53<br>0.78<br>1.52<br>1.07                                                         | 2.36<br>2.69<br>0.52<br>0.47                                                         | 1.57<br>4.10<br>2.57<br>0.33                                                         | 0.22<br>2.01<br>0.44                                                         | 0.46<br>0.02<br>0.14                                                         | 1.07<br>0.12<br>0.04                                                 | 0.00<br>0.00<br>0.00                                        | 0.00<br>0.00<br>0.00                                         | 0.00<br>0.01<br>0.33                                                         | 16.21<br>8.80<br>10.71                                                      | 16.21<br>8.79<br>10.38                                                               | 112%<br>61%<br>74%                                              |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014                                                 | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00                                         | 0.21<br>2.02<br>0.93<br>3.40<br>1.30                                                 | 2.02<br>3.87<br>0.04<br>4.22<br>0.38                                                 | 3.53<br>0.78<br>1.52<br>1.07<br>0.08                                                 | 2.36<br>2.69<br>0.52<br>0.47<br>2.58                                                 | 1.57<br>4.10<br>2.57<br>0.33<br>1.25                                                 | 0.22<br>2.01<br>0.44<br>0.98                                                 | 0.46<br>0.02<br>0.14<br>0.00                                                 | 1.07<br>0.12<br>0.04<br>0.01                                         | 0.00<br>0.00<br>0.00<br>0.00                                | 0.00<br>0.00<br>0.00<br>0.00                                 | 0.00<br>0.01<br>0.33<br>0.22                                                 | 16.21<br>8.80<br>10.71<br>6.80                                              | 16.21<br>8.79<br>10.38<br>6.91                                                       | 112%<br>61%<br>74%<br>47%                                       |
| 2009<br>2010<br>2011<br>2012<br>2013                                                         | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17                                 | 0.21<br>2.02<br>0.93<br>3.40                                                         | 2.02<br>3.87<br>0.04<br>4.22                                                         | 3.53<br>0.78<br>1.52<br>1.07                                                         | 2.36<br>2.69<br>0.52<br>0.47                                                         | 1.57<br>4.10<br>2.57<br>0.33                                                         | 0.22<br>2.01<br>0.44                                                         | 0.46<br>0.02<br>0.14                                                         | 1.07<br>0.12<br>0.04                                                 | 0.00<br>0.00<br>0.00                                        | 0.00<br>0.00<br>0.00                                         | 0.00<br>0.01<br>0.33                                                         | 16.21<br>8.80<br>10.71                                                      | 16.21<br>8.79<br>10.38                                                               | 112%<br>61%<br>74%<br>47%<br>91%                                |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017                         | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17<br>0.02<br>3.34                 | 0.21<br>2.02<br>0.93<br>3.40<br>1.30<br>1.19<br>2.49<br>1.37                         | 2.02<br>3.87<br>0.04<br>4.22<br>0.38<br>8.23<br>2.55<br>2.62                         | 3.53<br>0.78<br>1.52<br>1.07<br>0.08<br>0.00<br>3.95<br>8.10                         | 2.36<br>2.69<br>0.52<br>0.47<br>2.58<br>1.62<br>0.69<br>6.07                         | 1.57<br>4.10<br>2.57<br>0.33<br>1.25<br>0.25<br>3.30<br>2.09                         | 0.22<br>2.01<br>0.44<br>0.98<br>0.78<br>2.14<br>1.93                         | 0.46<br>0.02<br>0.14<br>0.00<br>0.50<br>0.21<br>0.03                         | 1.07<br>0.12<br>0.04<br>0.01<br>0.33<br>0.00<br>0.02                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00         | 0.00<br>0.01<br>0.33<br>0.22<br>0.05<br>0.00                                 | 16.21<br>8.80<br>10.71<br>6.80<br>13.13<br>15.35<br>25.57                   | 16.21<br>8.79<br>10.38<br>6.91<br>13.29<br>15.41<br>25.57                            | 112%<br>61%<br>74%<br>47%<br>91%<br>106%<br>176%                |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                 | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17<br>0.02<br>3.34<br>0.18         | 0.21<br>2.02<br>0.93<br>3.40<br>1.30<br>1.19<br>2.49<br>1.37<br>2.20                 | 2.02<br>3.87<br>0.04<br>4.22<br>0.38<br>8.23<br>2.55<br>2.62<br>0.06                 | 3.53<br>0.78<br>1.52<br>1.07<br>0.08<br>0.00<br>3.95<br>8.10<br>3.30                 | 2.36<br>2.69<br>0.52<br>0.47<br>2.58<br>1.62<br>0.69<br>6.07<br>0.57                 | 1.57<br>4.10<br>2.57<br>0.33<br>1.25<br>0.25<br>3.30<br>2.09<br>4.44                 | 0.22<br>2.01<br>0.44<br>0.98<br>0.78<br>2.14<br>1.93<br>1.68                 | 0.46<br>0.02<br>0.14<br>0.00<br>0.50<br>0.21<br>0.03<br>0.01                 | 1.07<br>0.12<br>0.04<br>0.01<br>0.33<br>0.00<br>0.02<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | 0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00 | 0.00<br>0.01<br>0.33<br>0.22<br>0.05<br>0.00<br>0.00                         | 16.21<br>8.80<br>10.71<br>6.80<br>13.13<br>15.35<br>25.57                   | 16.21<br>8.79<br>10.38<br>6.91<br>13.29<br>15.41<br>25.57                            | 112%<br>61%<br>74%<br>47%<br>91%<br>106%<br>176%<br>86%         |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019         | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17<br>0.02<br>3.34<br>0.18         | 0.21<br>2.02<br>0.93<br>3.40<br>1.30<br>1.19<br>2.49<br>1.37<br>2.20<br>1.64         | 2.02<br>3.87<br>0.04<br>4.22<br>0.38<br>8.23<br>2.55<br>2.62<br>0.06<br>1.54         | 3.53<br>0.78<br>1.52<br>1.07<br>0.08<br>0.00<br>3.95<br>8.10<br>3.30<br>2.66         | 2.36<br>2.69<br>0.52<br>0.47<br>2.58<br>1.62<br>0.69<br>6.07<br>0.57<br>6.31         | 1.57<br>4.10<br>2.57<br>0.33<br>1.25<br>0.25<br>3.30<br>2.09<br>4.44<br>2.58         | 0.22<br>2.01<br>0.44<br>0.98<br>0.78<br>2.14<br>1.93<br>1.68<br>0.30         | 0.46<br>0.02<br>0.14<br>0.00<br>0.50<br>0.21<br>0.03<br>0.01<br>1.63         | 1.07<br>0.12<br>0.04<br>0.01<br>0.33<br>0.00<br>0.02<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00 | 0.00<br>0.01<br>0.33<br>0.22<br>0.05<br>0.00<br>0.00<br>0.00                 | 16.21<br>8.80<br>10.71<br>6.80<br>13.13<br>15.35<br>25.57<br>12.44<br>17.06 | 16.21<br>8.79<br>10.38<br>6.91<br>13.29<br>15.41<br>25.57<br>12.44                   | 112%<br>61%<br>74%<br>47%<br>91%<br>106%<br>176%<br>86%<br>118% |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020 | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17<br>0.02<br>3.34<br>0.18<br>0.18 | 0.21<br>2.02<br>0.93<br>3.40<br>1.30<br>1.19<br>2.49<br>1.37<br>2.20<br>1.64<br>0.97 | 2.02<br>3.87<br>0.04<br>4.22<br>0.38<br>8.23<br>2.55<br>2.62<br>0.06<br>1.54<br>2.91 | 3.53<br>0.78<br>1.52<br>1.07<br>0.08<br>0.00<br>3.95<br>8.10<br>3.30<br>2.66<br>1.05 | 2.36<br>2.69<br>0.52<br>0.47<br>2.58<br>1.62<br>0.69<br>6.07<br>0.57<br>6.31<br>0.00 | 1.57<br>4.10<br>2.57<br>0.33<br>1.25<br>0.25<br>3.30<br>2.09<br>4.44<br>2.58<br>2.97 | 0.22<br>2.01<br>0.44<br>0.98<br>0.78<br>2.14<br>1.93<br>1.68<br>0.30<br>1.72 | 0.46<br>0.02<br>0.14<br>0.00<br>0.50<br>0.21<br>0.03<br>0.01<br>1.63<br>0.75 | 1.07<br>0.12<br>0.04<br>0.01<br>0.33<br>0.00<br>0.02<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00 | 0.00<br>0.01<br>0.33<br>0.22<br>0.05<br>0.00<br>0.00<br>0.00<br>0.22<br>0.00 | 16.21<br>8.80<br>10.71<br>6.80<br>13.13<br>15.35<br>25.57<br>12.44<br>17.06 | 16.21<br>8.79<br>10.38<br>6.91<br>13.29<br>15.41<br>25.57<br>12.44<br>16.84<br>10.59 | 112%<br>61%<br>74%<br>47%<br>91%<br>106%<br>176%<br>86%<br>118% |
| 2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019         | 0.33<br>2.79<br>1.00<br>1.06<br>0.27<br>0.00<br>0.17<br>0.02<br>3.34<br>0.18         | 0.21<br>2.02<br>0.93<br>3.40<br>1.30<br>1.19<br>2.49<br>1.37<br>2.20<br>1.64         | 2.02<br>3.87<br>0.04<br>4.22<br>0.38<br>8.23<br>2.55<br>2.62<br>0.06<br>1.54         | 3.53<br>0.78<br>1.52<br>1.07<br>0.08<br>0.00<br>3.95<br>8.10<br>3.30<br>2.66         | 2.36<br>2.69<br>0.52<br>0.47<br>2.58<br>1.62<br>0.69<br>6.07<br>0.57<br>6.31         | 1.57<br>4.10<br>2.57<br>0.33<br>1.25<br>0.25<br>3.30<br>2.09<br>4.44<br>2.58         | 0.22<br>2.01<br>0.44<br>0.98<br>0.78<br>2.14<br>1.93<br>1.68<br>0.30         | 0.46<br>0.02<br>0.14<br>0.00<br>0.50<br>0.21<br>0.03<br>0.01<br>1.63         | 1.07<br>0.12<br>0.04<br>0.01<br>0.33<br>0.00<br>0.02<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00 | 0.00<br>0.01<br>0.33<br>0.22<br>0.05<br>0.00<br>0.00<br>0.00                 | 16.21<br>8.80<br>10.71<br>6.80<br>13.13<br>15.35<br>25.57<br>12.44<br>17.06 | 16.21<br>8.79<br>10.38<br>6.91<br>13.29<br>15.41<br>25.57<br>12.44                   | 112%<br>61%<br>74%<br>47%<br>91%<br>106%<br>176%<br>86%<br>118% |



# TABLE 2-4 MONTHLY EVAPOTRANSPIRATION (ETo) DATA 2020 WATER YEAR

#### MONTHLY REFERENCE EVAPOTRANSPIRATION (Eto) (inches)

|       |       |       |       | 2020<br>Network | % Historic<br>Network |
|-------|-------|-------|-------|-----------------|-----------------------|
|       | LDV   | LWRP  | 191   | Average         | Average               |
| ОСТ   | 4.47  | 4.24  | 4.04  | 4.25            | 123.2%                |
| NOV   | 2.57  | 2.48  | 1.94  | 2.33            | 134.4%                |
| DEC   | 0.77  | 0.81  | 0.90  | 0.83            | 68.1%                 |
| JAN   | 0.81  | 0.95  | 1.30  | 1.02            | 86.7%                 |
| FEB   | 2.45  | 2.64  | 2.96  | 2.68            | 160.5%                |
| MAR   | 2.11  | 2.87  | 2.98  | 2.65            | 94.0%                 |
| APR   | 3.61  | 3.62  | 4.72  | 3.98            | 98.4%                 |
| MAY   | 6.02  | 5.40  | 6.53  | 5.99            | 109.0%                |
| JUN   | 6.91  | 6.66  | 7.79  | 7.12            | 109.3%                |
| JUL   | 7.21  | 6.62  | 7.99  | 7.27            | 100.7%                |
| AUG   | 7.04  | 6.55  | 6.86  | 6.82            | 105.8%                |
| SEP   | 4.92  | 4.19  | 4.68  | 4.59            | 90.2%                 |
| TOTAL | 48.89 | 47.05 | 52.69 | 49.54           |                       |
| % AVG | 113%  | 102%  | 103%  | 106%            |                       |

<sup>1)</sup> ETo values for LDV and LWRP were approximated using : ETo= Pan Evaporation x 0.642



# TABLE 2-5 HISTORICAL MONTHLY PAN EVAPORATION MONITORING STATION LAKE DEL VALLE, LIVERMORE (INCHES) 1969 to 2020 WATER YEARS

|              |              |              |              |              |              |              |              |              |              |                |              |              | TOTAL          | TOTAL          | % AVERAGE    |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|----------------|----------------|--------------|
| Water Year   | OCTWY        | NOVWY        | DECWY        | JAN          | FEB          | MAR          | APR          | MAY          | JUN          | JUL            | AUG          | SEP          | OCT-SEP        | JULY-JUNE      | OCT-SEP      |
| 1969         | 3.20         | 2.50         | 1.54         | 0.66         | 1.08         | 4.89         | 5.92         | 9.99         | 7.84         | 11.38          | 11.77        | 8.32         | 69.09          | NA             | 102%         |
| 1970         | 4.04         | 2.94         | 1.12         | 1.23         | 2.29         | 4.96         | 5.83         | 8.88         | 8.88         | 11.52          | 9.92         | 9.16         | 70.77          | 71.64          | 105%         |
| 1971         | 5.07         | 2.14         | 1.05         | 1.33         | 2.12         | 3.67         | 5.17         | 6.54         | 8.91         | 10.92          | 10.30        | 9.12         | 66.34          | 66.60          | 98%          |
| 1972         | 5.91         | 3.01         | 1.49         | 1.53         | 2.01         | 4.74         | 6.52         | 8.84         | 10.03        | 11.63          | 10.40        | 7.12         | 73.23          | 74.42          | 109%         |
| 1973         | 3.67         | 1.30         | 0.93         | 1.14         | 1.20         | 2.98         | 6.36         | 8.69         | 10.59        | 10.89          | 10.21        | 7.33         | 65.29          | 66.01          | 97%          |
| 1974         | 4.70         | 1.86         | 0.85         | 1.40         | 1.73         | 2.40         | 4.16         | 7.31         | 9.14         | 9.68           | 9.73         | 7.94         | 60.90          | 61.98          | 90%          |
| 1975         | 5.52         | 2.15         | 1.44         | 1.73         | 1.99         | 3.01         | 3.64         | 8.27         | 8.63         | 9.45           | 9.39         | 7.45         | 62.67          | 63.73          | 93%          |
| 1976         | 3.72         | 2.28         | 1.58         | 2.45         | 1.96         | 3.94         | 5.56         | 8.47         | 9.85         | 9.80           | 7.05         | 6.80         | 63.46          | 66.10          | 94%          |
| 1977         | 4.82         | 2.75         | 2.59         | 1.08         | 2.12         | 3.84         | 7.15         | 5.48         | 9.28         | 11.24          | 8.89         | 6.74         | 65.98          | 62.76          | 98%          |
| 1978         | 5.12         | 2.70         | 1.37         | 0.99         | 1.43         | 2.57         | 3.73         | 8.69         | 8.91         | 10.52          | 10.24        | 7.90         | 64.17          | 62.38          | 95%          |
| 1979         | 5.80         | 2.24         | 1.51         | 1.25         | 1.29         | 2.29         | 4.80         | 8.36         | 11.02        | 10.40          | 9.23         | 9.47         | 67.66          | 67.22          | 100%         |
| 1980         | 4.14         | 1.85         | 1.95         | 1.66         | 1.40         | 3.82         | 4.78         | 6.22         | 8.18         | 9.41           | 9.17         | 7.16         | 59.74          | 63.10          | 89%          |
| 1981         | 5.86         | 3.30         | 1.79         | 1.08         | 2.18         | 2.83         | 5.80         | 8.11         | 11.82        | 11.34          | 10.23        | 7.72         | 72.06          | 68.51          | 107%         |
| 1982         | 4.43         | 2.10         | 1.14         | 1.23         | 2.10         | 2.25         | 4.59         | 7.55         | 7.31         | 10.34          | 10.58        | 6.83         | 60.45          | 61.99          | 90%<br>89%   |
| 1983         | 4.53         | 1.50         | 1.54         | 1.72         | 1.54         | 2.17<br>4.29 | 4.05         | 6.71<br>9.04 | 8.34<br>9.88 | 10.44<br>11.99 | 9.35<br>9.80 | 7.82<br>9.24 | 59.71          | 59.85          |              |
| 1984<br>1985 | 4.37<br>4.02 | 1.86<br>1.63 | 1.08<br>1.11 | 1.52<br>1.18 | 1.79<br>2.70 | 3.09         | 5.32<br>5.95 | 9.04<br>7.75 | 9.88         | 11.49          | 9.80         | 6.38         | 70.18<br>64.93 | 66.76<br>68.86 | 104%<br>96%  |
| 1986         | 5.05         | 2.27         | 1.11         | 1.11         | 1.75         | 3.55         | 4.96         | 7.73         | 8.67         | 10.20          | 8.88         | 6.10         | 61.09          | 63.01          | 91%          |
| 1987         | 4.84         | 3.47         | 1.11         | 1.45         | 2.08         | 3.19         | 6.43         | 7.44         | 8.73         | 8.46           | 8.97         | 7.29         | 64.03          | 64.49          | 95%          |
| 1988         | 4.71         | 1.71         | 1.50         | 1.21         | 2.94         | 5.17         | 5.30         | 7.22         | 8.92         | 11.46          | 8.90         | 7.90         | 66.94          | 63.40          | 99%          |
| 1989         | 4.81         | 1.85         | 1.64         | 1.39         | 1.57         | 2.75         | 5.75         | 7.70         | 9.30         | 11.30          | 9.14         | 6.41         | 63.61          | 65.02          | 94%          |
| 1990         | 4.86         | 2.95         | 1.75         | 1.57         | 1.83         | 3.64         | 5.74         | 7.86         | 9.18         | 10.19          | 9.21         | 7.09         | 65.87          | 66.23          | 98%          |
| 1991         | 6.56         | 3.48         | 1.95         | 1.86         | 2.44         | 2.63         | 5.00         | 6.42         | 8.50         | 10.25          | 8.00         | 7.61         | 64.70          | 65.33          | 96%          |
| 1992         | 6.45         | 3.03         | 1.71         | 0.96         | 1.65         | 2.84         | 5.91         | 8.87         | 8.23         | 10.01          | 10.76        | 7.82         | 68.24          | 65.51          | 101%         |
| 1993         | 5.12         | 2.79         | 1.19         | 1.21         | 1.42         | 2.83         | 4.93         | 6.61         | 9.64         | 10.23          | 10.02        | 8.18         | 64.17          | 64.33          | 95%          |
| 1994         | 4.65         | 3.27         | 1.22         | 1.49         | 1.36         | 4.12         | 5.23         | 6.38         | 10.01        | 10.03          | 10.31        | 7.44         | 65.51          | 66.16          | 97%          |
| 1995         | 4.94         | 1.66         | 0.76         | 0.73         | 1.61         | 2.33         | 4.75         | 5.22         | 8.18         | 10.06          | 10.39        | 7.65         | 58.28          | 57.96          | 86%          |
| 1996         | 6.23         | 2.80         | 0.88         | 1.33         | 1.66         | 3.85         | 6.38         | 8.12         | 9.68         | 12.03          | 11.13        | 7.48         | 71.57          | 69.03          | 106%         |
| 1997         | 5.44         | 2.05         | 1.04         | 1.02         | 2.67         | 4.82         | 6.45         | 8.95         | 9.40         | 10.32          | 8.78         | 8.52         | 69.46          | 72.48          | 103%         |
| 1998         | 5.25         | 1.82         | 1.60         | 1.19         | 0.96         | 2.80         | 4.36         | 4.13         | 7.10         | 9.91           | 10.57        | 7.51         | 57.20          | 56.83          | 85%          |
| 1999         | 4.51         | 1.63         | 1.41         | 1.32         | 1.58         | 2.93         | 5.25         | 7.04         | 8.70         | 10.51          | 8.58         | 7.53         | 60.99          | 62.36          | 90%          |
| 2000         | 6.86         | 2.73         | 2.51         | 1.57         | 1.55         | 3.91         | 5.48         | 7.16         | 9.66         | 9.23           | 9.82         | 7.86         | 68.35          | 68.06          | 101%         |
| 2001         | 3.84         | 1.84         | 1.68         | 1.45         | 2.20         | 4.14         | 4.86         | 10.05        | 10.92        | 9.78           | 9.75         | 7.98         | 68.49          | 67.89          | 102%         |
| 2002<br>2003 | 6.56         | 2.56         | 1.47         | 1.97         | 2.56<br>2.31 | 4.63<br>4.04 | 5.65<br>4.05 | 7.82         | 9.87<br>9.78 | 11.08          | 9.87<br>9.23 | 9.13<br>8.84 | 73.17          | 70.60          | 108%         |
| 2003         | 5.64<br>6.71 | 3.23<br>1.72 | 1.73<br>1.12 | 1.26<br>1.08 | 2.31         | 4.04         | 7.38         | 7.62<br>8.66 | 9.78<br>9.46 | 12.14<br>10.16 | 9.23         | 8.76         | 69.87<br>72.14 | 69.74<br>73.55 | 104%<br>107% |
| 2004         | 4.86         | 2.21         | 1.12         | 1.14         | 1.54         | 3.20         | 4.93         | 6.60         | 8.37         | 11.13          | 10.65        | 7.41         | 63.58          | 63.19          | 94%          |
| 2006         | 5.19         | 2.50         | 1.50         | 1.52         | 2.47         | 3.04         | 3.81         | 8.54         | 9.82         | 12.43          | 9.37         | 8.42         | 68.61          | 67.58          | 102%         |
| 2007         | 5.27         | 2.09         | 2.22         | 1.98         | 1.71         | 4.34         | 5.86         | 8.58         | 9.59         | 9.814          | 10.45        | 7            | 68.90          | 71.86          | 102%         |
| 2008         | 4.45         | 3.25         | 1.68         | 1.37         | 2.14         | 4.60         | 6.65         | 8.66         | 10.37        | 10.54          | 10.54        | 8.42         | 72.67          | 70.43          | 108%         |
| 2009         | 6.27         | 2.40         | 1.35         | 2.04         | 1.95         | 3.90         | 6.24         | 8.52         | 9.09         | 11.053         | 10.12        | 8.63         | 71.566         | 71.26          | 106%         |
| 2010         | 4.84         | 3.00         | 1.28         | 1.20         | 1.61         | 3.91         | 4.65         | 6.40         | 9.52         | 10.2           | 9.08         | 8.26         | 63.95          | 66.21          | 95%          |
| 2011         | 4.98         | 2.43         | 1.13         | 1.53         | 2.46         | 2.64         | 5.64         | 7.13         | 8.22         | 10.25          | 9.62         | 8.46         | 64.49          | 63.70          | 96%          |
| 2012         | 4.73         | 2.30         | 2.93         | 2.49         | 2.84         | 3.46         | 5.52         | 8.84         | 10.19        | 11.27          | 10.58        | 8.08         | 73.23          | 71.63          | 109%         |
| 2013         | 5.28         | 2.55         | 1.89         | 1.48         | 2.51         | 4.74         | 7.61         | 9.09         | 10.20        | 11.78          | 9.35         | 7.45         | 73.93          | 75.28          | 110%         |
| 2014         | 6.04         | 3.41         | 2.59         | 3.43         | 2.43         | 4.66         | 6.23         | 10.51        | 10.77        | 11.05          | 9.56         | 7.6          | 78.28          | 78.65          | 116%         |
| 2015         | 6.26         | 2.73         | 1.16         | 1.79         | 2.65         | 4.96         | 6.62         | 7.31         | 10.01        | 10.73          | 10           | 9.37         | 73.59          | 71.70          | 109%         |
| 2016         | 5.81         | 2.19         | 1.20         | 0.75         | 2.80         | 3.30         | 5.70         | 7.92         | 11.87        | 12.29          | 9.71         | 9.06         | 72.6           | 71.64          | 108%         |
| 2017         | 4.74         | 2.32         | 1.56         | 1.16         | 1.49         | 3.78         | 5.18         | 8.93         | 9.78         | 12.02          | 10.04        | 8.34         | 69.34          | 70.00          | 103%         |
| 2018         | 6.53         | 2.15         | 2.60         | 1.51         | 3.33         | 3.46         | 5.30         | 7.95         | 10.43        | 12.22          | 9.84         | 8.11         | 73.43          | 73.66          | 109%         |
| 2019         | 5.88         | 4.07         | 1.70         | 1.93         | 1.57         | 3.22         | 5.99         | 6.27         | 10.99        | 11.55          | 11.25        | 8.36         | 72.78          | 71.79          | 108%         |
| 2020         | 6.99         | 4.01         | 1.20         | 1.27         | 3.82         | 3.29         | 5.64         | 9.41         | 10.80        | 11.26          | 11           | 7.68         | 76.37          | 77.59          | 113%         |
| MAXIMUM      | 6.99         | 4.07         | 2.93         | 3.43         | 3.82         | 5.17         | 7.61         | 10.51        | 11.87        | 12.43          | 11.77        | 9.47         | 78.28          | 78.65          | 116%         |
| MINIMUM      | 3.20         | 1.30         | 0.76         | 0.66         | 0.96         | 2.17         | 3.64         | 4.13         | 7.10         | 8.46           | 7.05         | 6.10         | 57.20          | 56.83          | 85%          |
| MEAN         | 5.19         | 2.47         | 1.52         | 1.44         | 2.01         | 3.60         | 5.48         | 7.82         | 9.48         | 10.76          | 9.79         | 7.89         | 67.45          | 67.45          | 100%         |

ETo can be approximated using: ETo= Pan Evaporation x 0.6402

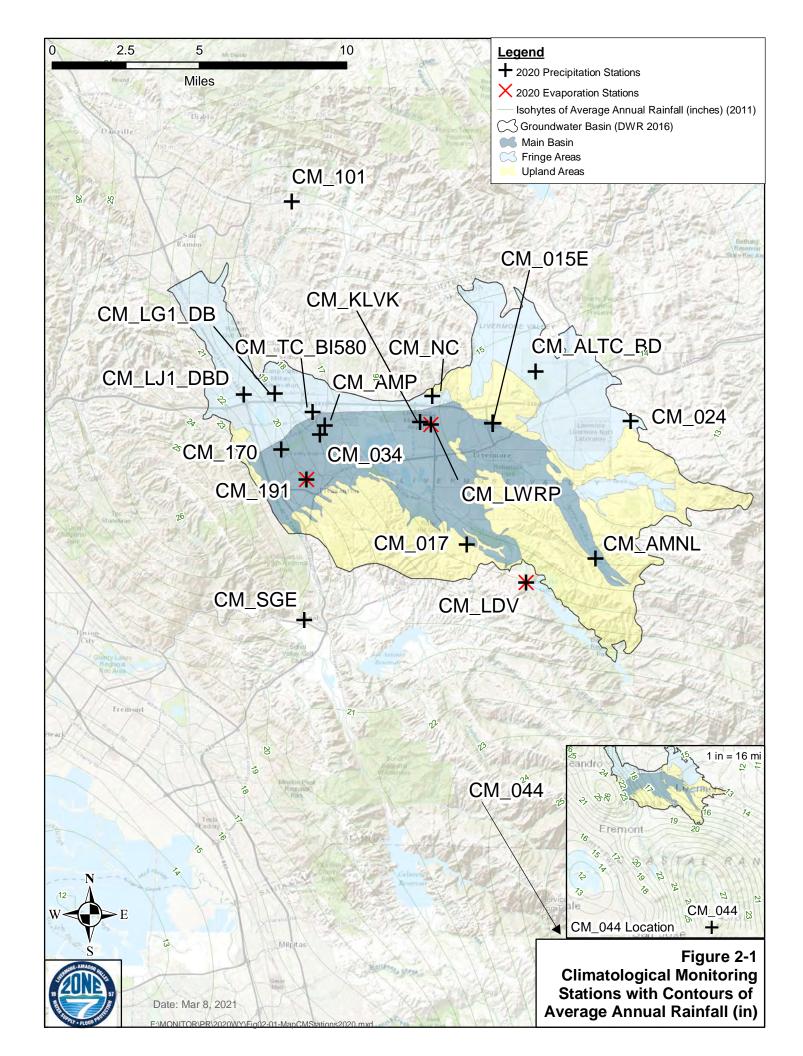
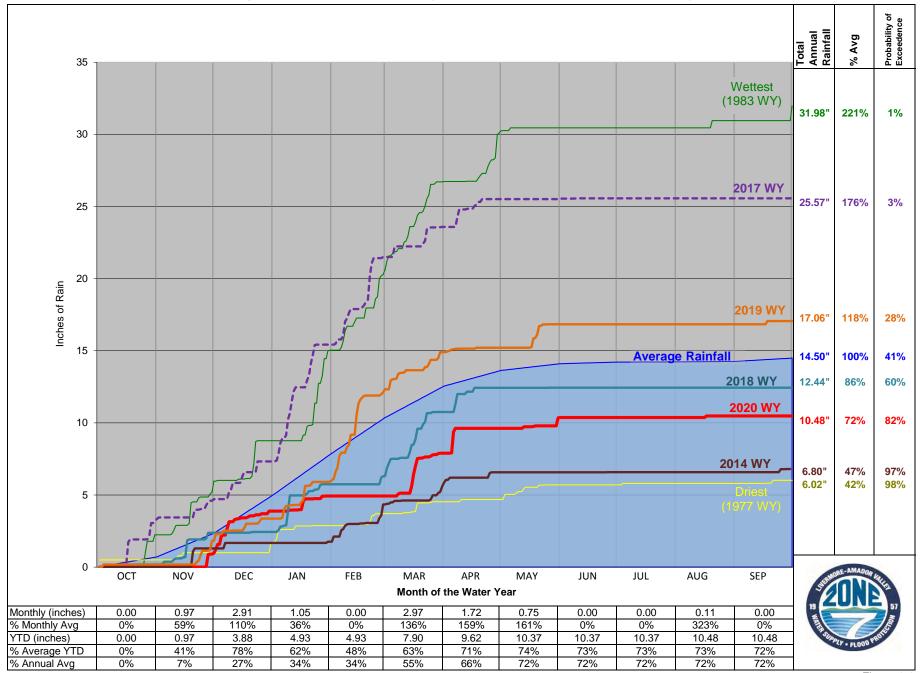




FIGURE 2-2
ZONE 7 WATER AGENCY
Graph of Livermore Rainfall Index (CM\_15E to June 2020, CM\_KLVK thereafter)



### 3 Surface Water

# 3.1 Program Description

# 3.1.1 Monitoring Network

Zone 7's Surface Water Monitoring Program focuses on the four main gaining and losing streams that affect the groundwater basin (Arroyo Valle, Arroyo Mocho, Arroyo Las Positas, and Arroyo de la Laguna) and the diversions, releases, and natural runoff that affect the flows into and out of each of them. *Figure 3-1* shows all the stations monitored for the 2020 WY. *Table 3-1* includes pertinent details of all the stations.

The Surface Water Monitoring Program utilizes a main network of stream gauge stations and flow meters to compute the quantity of water flowing past each station and the amount of water recharging the Basin between them. At least once per year, water samples are collected from the 10 main stations and submitted to Zone 7's laboratory for analysis of TDS, nutrients, metals, and other minerals from which salt and nutrient loading (and removal) are computed, see Section 13, Water Quality Sustainability.

Several other auxiliary surface water monitoring stations have been established as high flow and/or stream temperature monitoring stations to augment the data collected at the 10 main stations for various ongoing flood management and habitat studies (*Table 3-1* and *Figure 3-1*). For detailed information on Zone 7's Surface Water Monitoring Program, see *Section 4.3*, *Surface Water Monitoring*, of the Alternative GSP.

# 3.1.2 Program Changes for the Water Year

No changes were made to the Surface Water Monitoring Program's main network that is used to assess groundwater sustainability; however, an addition was made to the auxiliary programs, as follows:

 One new high-flow-only stream gauge was installed in August 2020: Arroyo Seco at Southfront Road (AS\_SFR, see Figure 3-1). This site is currently only recording stream level and water temperature. Streamflow will be added when high flow measurements are obtained. Zone 7 Water Agency 3 Surface Water

## 3.2 Results for the 2020 Water Year

### 3.2.1 Introduction

Twenty surface water recorder stations and five flow meters were operated and maintained for the Surface Water Monitoring Program in the 2020 WY. Data was tabulated monthly for 11 of the stations (10 main stations plus Station Alamo Canal near Pleasanton [ACNP]) in *Table 3-2*. Water samples were collected from all 10 main stations and analyzed to identify the quality of water recharging and discharging from the groundwater basin (*Table 3-3*).

The following sections outline the Surface Water Monitoring Program activities for the 2020 WY (listed by stream) and highlight the findings and conclusions from these activities.

# 3.2.2 Arroyo Valle

The following are items of special note for the Arroyo Valle in the 2020 WY.

- The watershed runoff total into Lake Del Valle (LDV), as recorded by Arroyo Valle below Lang Canyon (AVBLC) was 2,701 acre-feet (AF); 11.0% of average.
- There were no flood releases into Arroyo Valle from LDV (Station LDV\_FLD\_TTL).
- Zone 7 released 3,855 AF from the South Bay Aqueduct (SBA) into Arroyo Valle for artificial recharge, 110% of average. Zone 7 discontinued these releases on July 30 due to low State Water Project (SWP) allocations (20%).
- "Live stream" conditions were maintained in the Arroyo Valle with natural and artificial flows until August 9, 2020.
- Peak flows recorded on the Arroyo Valle were 30.8 cubic feet per second (cfs) at Arroyo Valle near Livermore (AVNL) and 73.2 cfs at Arroyo Del Valle at Pleasanton (ADVP); the water year annual mean flows for each station were 5.7 and 2.0 cfs, respectively.
- As is usually the case recently (and for the expected future), the aggregate mining companies did not make any discharges into the Arroyo Valle in the 2020 WY.
- East Bay Regional Parks District (EBRPD) diverted 271 AF from the Arroyo Valle into Shadow Cliffs Lake (Station AV\_DIV\_SC) for recreation and groundwater recharge, 44% of average.

Zone 7 Water Agency 3 Surface Water

# 3.2.3 Arroyo Mocho

The following are items of special note for the Arroyo Mocho in the 2020 WY.

• The total upper watershed runoff that flowed into the Valley, past Station Arroyo Mocho near Livermore (AMNL), was 812 AF (23% of average).

- The peak flows recorded at AMNL and Arroyo Mocho at Livermore (AMHAG) were 73 cfs and 227 cfs, respectively; the 2020 WY annual mean flows for each station were 1.1 and 0.3 cfs, respectively.
- No water releases were made into Arroyo Mocho from the SBA for artificial groundwater recharge purposes (Station SBA\_AM, average about 3,500 AF).

# 3.2.4 Arroyo Las Positas

The following are items of special note for the Arroyo Las Positas in the 2020 WY.

- The peak flows recorded on the Arroyo Las Positas were 314 cfs at Station Arroyo Las Positas at Livermore (ALPL) and 256 cfs at Station Arroyo Las Positas above El Charro Road (ALP\_ELCH); the 2020 WY annual mean flows at each station were 4.6 and 4.3 cfs, respectively.
- As is usually the case recently (and for the expected future), no water releases were made from the SBA into Altamont Creek (Station SBA\_ALTC), a tributary to the ALP.

# 3.2.5 Arroyo de la Laguna

The following are items of special note for the Arroyo de la Laguna in the 2020 WY.

- A total of 15,548 AF of water flowed out of the Valley past Station Arroyo de la Laguna at Verona (ADLLV); 29.7% of average.
- The peak flow recorded at ADLLV was 1,350 cfs; the 2020 WY annual mean flow was 21.4 cfs.



# TABLE 3-1 TABLE OF SURFACE WATER MONITORING STATIONS AND MONITORING INFORMATION 2020 WATER YEAR

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Flow         | Flow   | Gauge  | Flow     | Water     | Other        | WQ         | Primary  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------|--------|----------|-----------|--------------|------------|----------|
| Station ID   | Station Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Station Type   | Range        | Frea   | Height | (Q)      | Temp      | Parameters   | Frea       | Operator |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALAMO CAN      | Ū            |        |        | ()       |           | 1            |            |          |
| A CNID       | Alarea Caral resu Planaratar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              | 15 54: | Т      |          | 45.845    | CCD          | Ī          | LICCC    |
| ACNP         | Alamo Canal near Pleasanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream Gauge   | Entire       | 15 Min | X      | X        | 15 Min    | SSD          | -          | USGS     |
| AC_WCD       | Alamo Creek at Willow Creek Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stream Gauge   | High         | 15 Min | Х      | Х        | 15 Min    | <u> </u>     | -          | Zone 7   |
| ALTC DD      | Alternational and all plants all | ALTAMONT CI    |              |        | ı      |          | 45.00     | 1            | ı          |          |
| ALTC_BD      | Altamont Creek at Bluebell Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stream Gauge   | High         | 15 Min | Х      | Х        | 15 Min    | -            | -          | Zone 7   |
| SBA_ALTC     | SBA Turnout to Altamont Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flow Meter     | Low          | 15 Min |        | Х        |           | -            | -          | DWR      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARROYO DE LA L |              | 1      | ı      |          | T         |              | I          |          |
| ADLLV        | Arroyo De La Laguna at Verona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stream Gauge   |              | 15 Min | Х      | Х        | 15 Min    | pH, SC       | Annual     | USGS     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARROYO LAS PO  |              |        | ı      |          |           | •            | ı .        |          |
| ALP_ELCH     | Arroyo Las Positas above El Charro Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | -            | Annual     | Zone 7   |
| ALPL         | Arroyo Las Positas at Livermore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | Turb, SSD    | Annual     | Zone 7   |
| LLNL_ALP     | LLNL Treated Groundwater Discharge to ALP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Estimated      | Low          | Daily  | -      | Х        | -         | <u> </u>     | -          | LLNL     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARROYO MO      |              |        |        |          |           |              |            |          |
| AMHAG        | Arroyo Mocho at Livermore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | Turb, SSD    | Annual     | Zone 7   |
| AM_KB        | Arroyo Mocho at Kaiser Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | -            | Annual     | Zone 7   |
| AMNL         | Arroyo Mocho near Livermore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | -            | Annual     | Zone 7   |
| AMP          | Arroyo Mocho near Pleasanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stream Gauge   | Entire       | 15 Min | х      | Х        | 15 Min    | Turb, SSD    | Annual     | Zone 7   |
| MA_COPE_I    | Cope Lake to Lake I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lake Gauge     | Low          | Hourly | Х      | Х        | -         | -            | -          | Zone 7   |
| MA_VUL_COPE  | Vulcan Discharge to Cope Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flow Meter     | Low          | Daily  | -      | Х        | -         | -            | -          | Vulcan   |
| SBA_AM       | SBA Turnout to Arroyo Mocho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flow Meter     | Low          | 15 Min | -      | Х        | -         | -            | -          | DWR      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARROYO SE      | CO - LINE P  |        |        |          |           |              |            |          |
| AS_SFR       | Arroyo Seco at Southfront Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stream Gauge   | High         | 15 Min | Х      | Х        | 15 Min    | -            | -          | Balance  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARROYO VA      | LLE - LINE E |        |        |          |           |              |            |          |
| ADVP         | Arroyo Valle at Pleasanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stream Gauge   | Entire       | 15 Min | х      | Х        | 15 Min    | -            | Quarterly* | Zone 7   |
| AVADLL       | Arroyo Valle above Arroyo De La Laguna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Temp     | -            | -      | -      | -        | 15 Min    | -            | -          | Zone 7   |
| AVBLC        | Arroyo Valle below Lang Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stream Gauge   | Entire       | 15 Min | Х      | Х        | 15 Min    | -            | Annual     | USGS     |
| AVCAT        | Arroyo Valle along Camp Arroyo Trail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water Temp     | -            | -      | -      | -        | 15 Min    | -            | -          | Zone 7   |
| AVDCC        | Arroyo Valle at Dry Creek Confluence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water Temp     | -            | -      | -      | -        | 15 Min    | -            | -          | Zone 7   |
| AV DIV SC    | Arroyo Valle Diversion to Shadow Cliffs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flow Meter     | Low          | Daily  | -      | х        | -         | -            | -          | EBRPD    |
| AV ISABEL    | Arroyo Valle at Isabel Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water Temp     | -            | -      | -      | -        | 15 Min    | -            | -          | Zone 7   |
| AVNL         | Arroyo Valle near Livermore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stream Gauge   | Entire       | 15 Min | х      | Х        | 15 Min    | -            | Quarterly* | USGS     |
| AVSCPK18     | Arroyo Valle at Shadow Cliffs Pond K18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Temp     | -            | -      | -      | -        | 15 Min    | -            | -          | Zone 7   |
| AVSGP        | Arroyo Valle at Sycamore Grove Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water Temp     | _            | -      | -      | -        | 15 Min    | -            | _          | Zone 7   |
| LDV FLD GATE | Lake Del Valle Flood Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated     | High         | 15 Min | _      | х        | -         | _            | _          | DWR      |
| SBA TO1 AV   | SBA Turnout 1 to Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Estimated      | Low          | 15 Min | _      | x        | _         | -            | _          | Zone 7   |
| SBA_TO1_AV   | SBA Turnout 2 to Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flow Meter     | Low          | 15 Min | _      | x        | 15 Min    | _            | _          | DWR      |
| 30H_10Z_AV   | 35. Cramout 2 to Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHABOT CAN     |              |        |        |          | 12 191111 |              |            | DVVI     |
| CCNP         | Chabot Canal below Stoneridge Drive nr Pleasanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stream Gauge   | High         | 15 Min | х      | х        | 15 Min    | I -          | _          | Zone 7   |
| LG1 DB       | Line G1 at Dublin Blvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stream Gauge   | High         | 15 Min | X      | -        | 15 Min    | -            |            | Zone 7   |
| FO1_DB       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OUTH SAN RAMO  |              |        |        | <u> </u> | 10 101111 |              | <u> </u>   | ZOIIE /  |
| LJ1 BDB      | Line J1 Below Dublin Blvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stream Gauge   | High         | 15 Min | х      | -        | 15 Min    | Ι.           |            | Zone 7   |
| _            | South San Ramon Creek above Amador Valley Blvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stream Gauge   | High         | 15 Min | X      |          | 15 Min    | <del>-</del> | -          |          |
| SSRC_AVBLVD  | South San Ramon Creek above Amador Valley BIVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TASSAJARA CI   | Ū            |        | X      | Х        | TO IVIIII |              |            | Zone 7   |
| TC DIEGO     | Tassaiara Crook holow IE 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |              | 1      |        | ,,       | 15 84:    | 1            | I          | 70007    |
| TC_BI580     | Tassajara Creek below I580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stream Gauge   | High         | 15 Min | Х      | Х        | 15 Min    | -            | -          | Zone 7   |

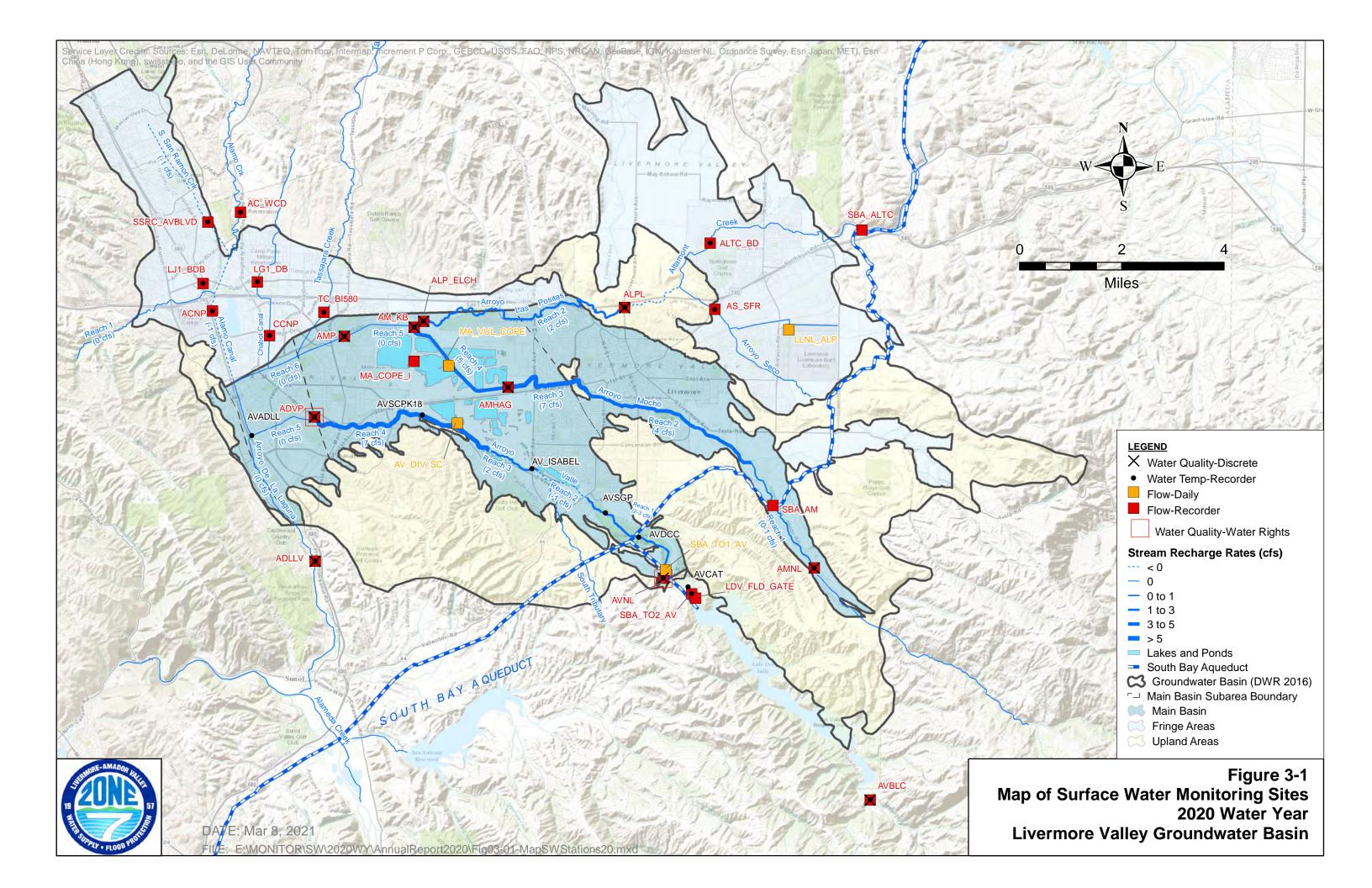
<sup>\*</sup> Satisfies water rights requirements. Turb = Turbidity. SSD = Suspended Sediment Discharge. SC = Specific Conductance. E:\MONITOR\SW\2020WY\AnnualReport2020\Tbl03-01-ListSurfaceWaterStations20.xlsx 2/19/2021



### TABLE 3-2 MONTHLY FLOWS (ACRE-FEET) STREAMFLOW GAUGING STATIONS 2020 WATER YEAR

|       | ARROYO       | ARROYO     | ARROYO     | ARROYO    | ARROYO    | ARROYO        | ARROYO     | ARROYO LAS | ARROYO LAS       | ALAMO       | ARROYO DE |
|-------|--------------|------------|------------|-----------|-----------|---------------|------------|------------|------------------|-------------|-----------|
|       | VALLE        | VALLE      | VALLE      | MOCHO     | МОСНО     | MOCHO         | МОСНО      | POSITAS    | POSITAS          | CANAL       | LA LAGUNA |
|       | Below        | Near       | At         | Near      | At        | At            | Near       | At         | At               | Near        | At        |
|       | LANG CANYON* | LIVERMORE* | PLEASANTON | LIVERMORE | LIVERMORE | KAISER BRIDGE | PLEASANTON | LIVERMORE  | <b>EL CHARRO</b> | PLEASANTON* | VERONA*   |
| MONTH | AVBLC        | AVNL       | ADVP       | AMNL      | AMHAG     | AM_KB         | AMP        | ALPL       | ALP_ELCH         | ACNP        | ADLLV     |
| OCT   | 0            | 451        | 76         | 2         | 0         | 0             | 126        | 156        | 113              | 170         | 518       |
| NOV   | 0            | 487        | 165        | 3         | 13        | 0             | 311        | 253        | 249              | 559         | 1,294     |
| DEC   | 304          | 237        | 148        | 117       | 50        | 38            | 906        | 607        | 630              | 1,436       | 3,101     |
| JAN   | 331          | 233        | 45         | 138       | 8         | 0             | 447        | 358        | 356              | 781         | 1,579     |
| FEB   | 158          | 372        | 69         | 80        | 0         | 0             | 162        | 180        | 154              | 221         | 572       |
| MAR   | 447          | 414        | 331        | 217       | 60        | 45            | 830        | 542        | 618              | 877         | 2,675     |
| APR   | 1,353        | 333        | 347        | 241       | 72        | 54            | 802        | 461        | 542              | 1,186       | 3,138     |
| MAY   | 106          | 356        | 57         | 13        | 0         | 0             | 192        | 184        | 151              | 547         | 1,043     |
| JUN   | 2            | 538        | 40         | 2         | 0         | 0             | 126        | 152        | 94               | 184         | 458       |
| JUL   | 0            | 660        | 79         | 0         | 0         | 0             | 112        | 158        | 81               | 135         | 404       |
| AUG   | 0            | 45         | 9          | 0         | 0         | 0             | 104        | 149        | 75               | 164         | 405       |
| SEP   | 0            | 37         | 0          | 0         | 0         | 0             | 103        | 142        | 77               | 145         | 361       |
| TOTAL | 2,701        | 4162       | 1,364      | 812       | 201       | 137           | 4,220      | 3,339      | 3,140            | 6,404       | 15,548    |

<sup>\*</sup> USGS Stations


These recorder locations are high flow only and are not presented in this table: AC\_WCD, ALTC\_BD, AS\_SFR, CCNP, LG1\_DB, LJ1\_BDB, SSRC\_AVBLVD, and TC\_BI580

These recorder locations are only flow input sites and are not presented in this table: SBA\_TO2\_AV, SBA\_AM, and SBA\_ALTC



# TABLE 3-3 TABLE OF SURFACE WATER QUALITY RESULTS 2020 WATER YEAR

|          |            |       | FLOW  | TEMP. | sc    |     |    |    | M   | ineral C | onstitue | nts (mg/ | /L) |       |      | S    | elect Me | tals (ug/ | L)   | TDS  | Hard |
|----------|------------|-------|-------|-------|-------|-----|----|----|-----|----------|----------|----------|-----|-------|------|------|----------|-----------|------|------|------|
| SITE ID  | Date       | Time  | (cfs) | °C    | mS/cm | рН  | Ca | Mg | Na  | K        | нсоз     | SO4      | CI  | NO3N  | SiO2 | В    | As       | Fe        | Cr   | mg/L | mg/L |
| ADLLV    | 9/17/2020  | 13:32 | 7*    | 23.2  | 1461  | 7.9 | 74 | 47 | 166 | 4.1      | 417      | 144      | 198 | 0.38  | 14.6 | 1450 | 3.1      | < 100     | < 1  | 857  | 379  |
| ADVP     | 11/25/2019 | 11:13 | 0.5*  | 10.3  | 465   | 7.3 | 35 | 16 | 35  | 2.3      | 206      | 25       | 28  | < 0.1 | 4.1  | 200  | 1.2      | < 100     | < 1  | 247  | 154  |
| ADVP     | 3/25/2020  | 13:23 | 4.4*  | 12.3  | 416   | 7.5 | 32 | 13 | 30  | 2        | 147      | 28       | 32  | < 0.1 | 4.1  | 200  | < 1      | < 100     | < 1  | 214  | 133  |
| ALP_ELCH | 9/16/2020  | 14:43 | 1.3*  | 21    | 1394  | 8.3 | 58 | 48 | 171 | 3.8      | 404      | 88       | 223 | 1.4   | 18.6 | 2850 | 2.6      | < 100     | < 1  | 820  | 343  |
| ALPL     | 9/16/2020  | 13:36 | 2.4*  | 19.6  | 1370  | 8.2 | 68 | 49 | 166 | 2.5      | 433      | 82       | 211 | 3.12  | 27.8 | 2870 | 2.1      | < 100     | 2.2  | 837  | 372  |
| AM_KB    | 3/16/2020  | 10:50 | 10.3* | 0.0   | 75    | 6.8 | 5  | 2  | 0   | 0.0      | 32       | 2        | 3   | 0.32  | 0.0  | 0.0  | 0.000    | 0.00      | 0.00 | 0    | 22   |
| AMHAG    | 3/16/2020  | 13:00 | 6.1*  | 0.0   | 91    | 6.8 | 7  | 2  | 0   | 0.0      | 35       | 3        | 6   | 0.32  | 0.0  | 0.0  | 0.000    | 0.00      | 0.00 | 0    | 26   |
| AMNL     | 5/18/2020  | 13:35 | 0.2*  | 18.8  | 993   | 7.9 | 44 | 96 | 44  | 3        | 555      | 55       | 44  | < 0.1 | 11.8 | 880  | < 1      | < 100     | 1.4  | 573  | 507  |
| AMP      | 9/16/2020  | 15:46 | 1.7*  | 23.8  | 1488  | 8.5 | 64 | 48 | 180 | 5        | 391      | 95       | 259 | 2.87  | 16.9 | 2100 | 2.6      | < 100     | < 1  | 880  | 358  |
| AVBLC    | 5/18/2020  | 14:35 | 2.6*  | 20.3  | 574   | 8.3 | 50 | 34 | 31  | 1.9      | 272      | 67       | 17  | < 0.1 | 10.1 | 660  | < 1      | < 100     | < 1  | 349  | 265  |
| AVNL     | 11/25/2019 | 12:51 | 7.2*  | 12.8  | 358   | 7.4 | 21 | 10 | 32  | 2.1      | 106      | 29       | 33  | 0.38  | 10.3 | 200  | 1.6      | < 100     | < 1  | 192  | 93   |
| AVNL     | 3/25/2020  | 14:25 | 6.5*  | 14    | 507   | 7.5 | 29 | 14 | 52  | 2.5      | 120      | 49       | 57  | 0.35  | 7.9  | 300  | 1.7      | < 100     | < 1  | 273  | 130  |
| AVNL     | 9/16/2020  | 16:40 | 0.4*  | 18.2  | 695   | 8   | 49 | 25 | 60  | 3.1      | 241      | 83       | 56  | < 0.1 | 18.2 | 760  | 2        | < 100     | < 1  | 413  | 223  |



# 4 Mining Area

# 4.1 Program Description

# 4.1.1 Monitoring Network

The Chain of Lakes/Mining Area Monitoring Program includes water level measurements and water quality analysis for many of the mining area ponds or quarry lakes within the Livermore Valley. Presently, two mining companies, CEMEX and Vulcan Materials, have on-going surface mining operations for the extraction and sale of sands and gravels. Finer-grained materials (e.g., silts) that have been excavated but have not been sold are stored onsite and/or are used to backfill quarry excavations.

All water generated during mining that is discharged to a non-quarry property is metered and tracked as it exits the Valley in the arroyos. This program also tracks mining evaporation and includes estimates of groundwater lost due to the export of moist gravels. In general, quarry pits have been excavated into the Upper Aquifer; however, recently a few have been excavated into layers that appear to connect to the Lower Aquifer, exposing lower aquifers to mining operation dewatering. Zone 7 is evaluating the impacts of these changes in mining activities to drinking water supplies. Groundwater is pumped from some of the pits and transferred to others or discharged to the arroyos to facilitate the gravel extraction in the pits being actively mined. In addition, backfill of former quarry ponds with fine-grained materials results in an impediment to groundwater flow in the aquifers.

Ownership of 10 mining quarry lakes ("Chain of Lakes" or "COLs", Lakes A through I and Cope Lake) will ultimately be transferred to Zone 7 for future water resources management purposes. To date, Zone 7 has received titles to two lakes: Lake I and Cope Lake. Project management actions on the COLs Recharge Projects in the 2020 WY are discussed in Section 12.6 Chain of Lakes Recharge Projects of this report. For more detailed information on the Chain of Lakes/Mining Area Monitoring Program, see Section 4.4, Chain of Lakes and Quarry Operations Monitoring, of the Alternative GSP.

# 4.1.2 Program Changes for the Water Year

No changes were made to the program in the 2020 WY.

Zone 7 Water Agency 4 Mining Area

### 4.2 Results for the 2020 Water Year

#### 4.2.1 Water Elevations

Table 4-1 summarizes the water levels observed in the mining area ponds for the 2020 WY. Water elevations were measured in most of the pits in the mining area that contained water (lakes and ponds) during the 2020 WY. Figure 4-1 provides the groundwater elevation contours for the gravel mining pits and surrounding monitoring wells. The water elevations from the pits that are directly connected with the Upper Aquifer are included in the Groundwater Monitoring Program's dataset. This includes water elevations from mining area pits R24A (Lake E), R28 (Lake D), and P42 (Lake B), which appear to be in contact with both the Upper and Lower Aquifers. These three pond elevations are included in both the Upper and Lower Aquifer groundwater elevation contour maps presented in Section 6 Groundwater Elevations. Pond R24A is no longer being actively mined; however, its water level is kept low to facilitate reclamation activities. Ponds R3, R8 (Lake G), R22 (Lake F), and R23 are no longer considered connected to the Upper Aquifer after being filled with fine-grained materials. Therefore, water levels in these ponds no longer correlate with the surrounding Upper Aquifer groundwater elevations observed in surrounding monitoring wells.

# 4.2.2 Water Quality

Water quality was monitored in select mining ponds in May 2020. Salinity in the mining area ponds, measured as TDS, ranged from 233 mg/L in P10, which is supplied by Arroyo Valle, to 530 mg/L in pond P28 (future Lake A). See *Table 4-2* for the results of the water quality sampling conducted in the mining area.

Ponds K28 (Lake H) and K37 (Lake I) were sampled for per- and polyfluoroalkyl substances (PFAS) during the 2019 WY as part of Zone 7's assessment into the occurrence of PFAS in the groundwater basin. PFAS was detected in both lakes at levels just above the EPA's screening level (40 parts per trillion [ppt]*Error! Reference source not found.*) and below the preliminary remediation goal (70 ppt). The results are discussed in *Section 7.2.6, PFAS*. No ponds were sampled during the 2020 WY, however, Zone 7 is continuing to expand PFAS sampling in the groundwater basin and is considering sampling additional mining ponds.

# 4.2.3 Mining Activities and Water Budget

Aggregate mining activities during the 2020 WY were conducted by Vulcan Materials (formerly Calmat) and CEMEX (formerly RMC Lonestar). Vulcan Materials continued mining operations in Pit R28 (future Lake D) while CEMEX focused its mining in Pit P42 (future Lake B) during the 2020 WY. Estimated groundwater transfers and losses associated with the mining area are shown in *Table 4-A* and discussed below.

Zone 7 Water Agency 4 Mining Area

Table 4-A: Estimated Groundwater Transfer and Losses in Mining Area (AF)

| Activity                       | 2020 WY | 2019 WY |
|--------------------------------|---------|---------|
| Mining Area Transfers*         |         |         |
| Vulcan to Cope Lake            | 7,906   | 13,864  |
| Cope Lake to Lake I            | 7,562   | 11,879  |
| Diverted to Shadow Cliffs      | 271     | 444     |
| Mining Area Losses             |         |         |
| Processing Losses**            | 700     | 700     |
| Net Pond Precip/Evaporation    | 4,140   | 2,885   |
| Pumped GW Exported from Valley | 0       | 0       |

<sup>\*</sup> Transfers made to locations outside of the quarries.

Vulcan Materials did not discharge water into either Arroyo Mocho or Arroyo Valle during the 2020 WY. For the sixth consecutive year, all water discharges made by Vulcan Materials were captured in Cope Lake. In total, Vulcan discharged 7,906 AF of water into Cope Lake, of which an estimated 7,562 AF flowed into Lake I via the Cope-to-Lake I conduit during the 2020 WY. CEMEX also did not discharge any pumped groundwater into the arroyos during the 2020 WY. The groundwater pumped from pits P46 (Lake J) and P42 (future Lake B) was transferred to other onsite ponds and used as a gravel wash water source. Consequently, some of this water evaporated or left the Valley as exported gravel moisture, and some percolated through the pond bottoms and sides, and back into the aquifer. Although this extracted groundwater is not leaving the Basin, except by evaporation, the effect of dewatering in P42 (future Lake B), P46 (future Lake J), R24 (future Lake E), and R28 (future Lake D) contributed a localized groundwater depressions in the Amador East Subarea groundwater levels (see Section 6, Groundwater Elevations).

Based on ETo monitoring data for the 2020 WY and historic gravel sales information, an estimated total 4,140 AF of water evaporated from all the mining area ponds, and about 700 AF left the Basin as exported gravel moisture from the CEMEX and Vulcan operations during the 2020 WY.

Zone 7 continued its cooperative off-site recharge program with the EBRPD, using the Shadow Cliffs Lake as a spreading pond. The EBRPD operated its diversion equipment that siphons water from the Arroyo Valle into Shadow Cliffs diverting 271 AF during the 2020 WY, compared to 444 AF in the 2019 WY.

<sup>\*\*</sup> Estimated



### **TABLE 4-1** SEMIANNUAL WATER LEVELS IN MINING AREA PONDS **2020 WATER YEAR**

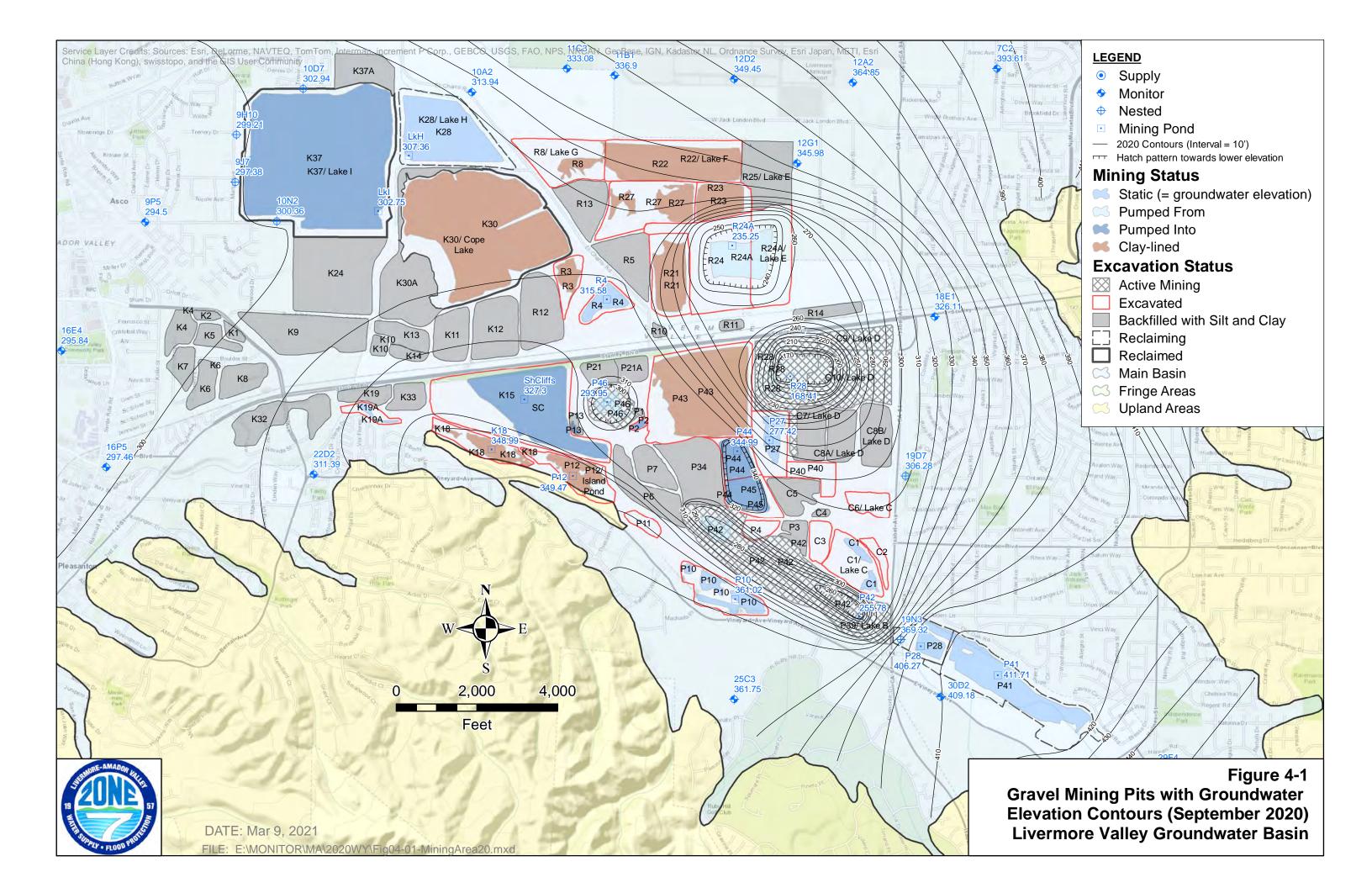
|            |          | E            | XCAVATIO    | NS     |         |          |                |             |         |              | CURREN     | IT PONDS      |         |            |         |         |
|------------|----------|--------------|-------------|--------|---------|----------|----------------|-------------|---------|--------------|------------|---------------|---------|------------|---------|---------|
|            |          |              |             | Deepes | t Mined | Pit      |                |             | Pond    |              |            |               |         | Pond El    | evation |         |
| Excavation | Chain of | Display Name | Original    | Dept   | h (ft)  | Area     | Mining Status  | Pond Name   | Area    | Contact      | Water Elev | Mining Use    |         | (ft MSL, I | NAVD88  | )       |
|            | Lake     |              | Ground Elev | Elev   | Depth   | (acres)  | -              |             | (acres) | with Aquifer | Status     |               | Fall 19 | Spring 20  | Fall 20 | WY Diff |
|            |          |              | C           | ALROCK |         | S & JAMI | ESON/PLEASANTO | N GRAVEL CO | MPANY/  | CALMAT/VU    | LCAN       | '             |         |            |         |         |
| MA-C001    | Lake C   | C1/ Lake C   | 410         | 360    | 50      | 32.2     | Excavated      | MA-C001     | 6       | No           | Static     | Unused        | 361.9   | NM         | 358.6   | -3.26   |
| MA-C002    |          | C2           | 410         | 360    | 50      | 6.1      | Excavated      |             |         |              |            |               |         |            |         |         |
| MA-C003    |          | C3           | 410         | 360    | 50      | 11.3     | Excavated      |             |         |              |            |               |         |            |         |         |
| MA-C004    |          | C4           | 400         | 390    | 10      | 1.7      | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-C005    |          | C5           | 400         | 290    | 110     | 19.2     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-C006    | Lake C   | C6/ Lake C   | 400         | 385    | 15      | 12.4     | Excavated      |             |         |              |            |               |         |            |         |         |
| MA-C007    | Lake D   | C7/ Lake D   | 400         | 330    | 70      | 22.1     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-C008A   | Lake D   | C8A/ Lake D  | 410         | 330    | 80      | 20.2     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-C009    | Lake D   | C9/ Lake D   | 410         | 310    | 100     | 20.8     | Active Mining  |             |         |              |            |               |         |            |         |         |
| MA-C008B   | Lake D   | C8B/ Lake D  | 410         | 340    | 70      | 26.8     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-C010    | Lake D   | C10/ Lake D  | 410         | 310    | 100     | 62.3     | Active Mining  |             |         |              |            |               |         |            |         |         |
| MA-R003    |          | R3           | 370         | 240    | 130     | 14.8     | Excavated      | MA-R003     | 7.8     | No           | Lined      | Settling Pond | 343.6   | 343.94     | 345.6   | 2.06    |
| MA-R004    |          | R4           | 380         | 240    | 140     | 16.5     | Excavated      | MA-R004     | 11      | Yes          | InFlux     | Water Storage | 309.7   | 317.52     | 315.6   | 5.9     |
| MA-R005    |          | R5           | 380         | 240    | 140     | 31.1     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R008    | Lake G   | R8/ Lake G   | 365         | 260    | 105     | 46       | Excavated      | MA-R008     | 6.7     | No           | Lined      | Water Storage | NM      | NM         | NM      |         |
| MA-R010    |          | R10          | 380         | 370    | 10      | 2.2      | Backfilled     |             |         |              |            | Ĭ             |         |            |         |         |
| MA-R011    |          | R11          | 390         | 370    | 20      | 3.4      | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R012    |          | R12          | 370         | 240    | 130     | 39.4     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R013    |          | R13          | 370         | 270    | 100     | 28.3     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R014    |          | R14          | 400         | 380    | 20      | 11.5     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R021    |          | R21          | 380         | 280    | 100     | 44.2     | Excavated      | MA-R021     | 28      | No           | Lined      | Settling Pond | NM      | NM         | NM      |         |
| MA-R022    | Lake F   | R22/ Lake F  | 380         | 290    | 90      | 79.3     | Excavated      | MA-R022     | 64.4    | No           | Lined      | Water Storage | 366.3   | 365.02     | 364     | -2.25   |
| MA-R023    |          | R23          | 380         | 270    | 110     | 27.5     | Excavated      | MA-R023     | 21.6    | No           | Lined      | Settling Pond | 359.7   | 360.24     | 360.7   | 0.94    |
| MA-R024    | Lake E   | R24A/ Lake E | 390         | 155    | 235     | 55.9     | Excavated      | MA-R024A    | 30.6    | Yes          | Depressed  | Dewatering    | 184.4   | 199.39     | 235.3   | 50.87   |
| MA-R025    | Lake E   | R25/ Lake E  | 395         | 300    | 95      | 43.7     | Backfilled     |             |         |              |            |               |         |            |         |         |
| MA-R027    |          | R27          | 380         | 300    | 80      | 59.5     | Excavated      | MA-R027     | 21.1    | No           | Lined      | Unused        | NM      | NM         | NM      |         |
| MA-R028    | Lake D   | R28/ Lake D  | 400         | 165    | 235     | 62.9     | Active Mining  | MA-R028     | 0.2     | Yes          | Depressed  | Dewatering    | 220.9   | 166.11     | 168.4   | -52.52  |



### **TABLE 4-1** SEMIANNUAL WATER LEVELS IN MINING AREA PONDS **2020 WATER YEAR**

| EXCAVATIONS |            |                 |             |            |         |         |               |           | CURRENT PONDS |              |            |               |         |            |         |         |
|-------------|------------|-----------------|-------------|------------|---------|---------|---------------|-----------|---------------|--------------|------------|---------------|---------|------------|---------|---------|
|             |            |                 |             | Deepes     | t Mined | Pit     |               |           | Pond          |              |            |               |         | Pond El    | evation |         |
| Excavation  | Chain of   | Display Name    | Original    |            | h (ft)  | Area    | Mining Status | Pond Name | Area          | Contact      | Water Elev | Mining Use    |         | (ft MSL, N | IAVD88) | 1       |
|             | Lake       |                 | Ground Elev | Elev       | Depth   | (acres) |               |           | (acres)       | with Aquifer | Status     |               | Fall 19 | Spring 20  | Fall 20 | WY Diff |
|             |            |                 | I           | ON AGGREGA | ATES    |         |               |           |               | , ,          |            |               |         |            |         |         |
| MA-K001     |            | K1              | 350         | 325        | 25      | 3.4     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K002     |            | K2              | 350         | 325        | 25      | 3.2     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K004     |            | K4              | 350         | 315        | 35      | 13      | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K005     |            | K5              | 350         | 315        | 35      | 10.4    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K006     |            | K6              | 350         | 325        | 25      | 13.4    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K007     |            | K7              | 350         | 320        | 30      | 11.7    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K008     |            | K8              | 350         | 320        | 30      | 17.7    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K009     |            | K9              | 360         | 305        | 55      | 57.4    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K010     |            | K10             | 370         | 355        | 15      | 4.4     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K011     |            | K11             | 370         | 315        | 55      | 24      | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K012     |            | K12             | 370         | 275        | 95      | 37.7    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K013     |            | K13             | 370         | 275        | 95      | 14.9    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K014     |            | K14             | 370         | 275        | 95      | 5.6     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K015     |            | K15             | 360         | 265        | 95      | 142.3   | Excavated     | MA-K015   | 81.8          | Yes          | Elevated   | Water Storage | 331.3   | 328.83     | 327.3   | -3.99   |
| MA-K018     | Lake Boris | K18/ Lake Boris | 360         | 330        | 30      | 24.5    | Excavated     | MA-K018   | 11.9          | Yes          | Lined      | Unused        | 350.4   | 350.57     | 349     | -1.41   |
| MA-K019     |            | K19A            | 350         | 335        | 15      | 8       | Excavated     | MA-K019A  | 2.1           | Yes          | Static     | Unused        | NM      | NM         | NM      |         |
| MA-K024     |            | K24             | 360         | 220        | 140     | 87.9    | Backfilled    | MA-K024   |               |              |            |               |         |            |         |         |
| MA-K028     | Lake H     | K28/ Lake H     | 360         | 220        | 140     | 89.6    | Reclaiming    | MA-K028   | 67.3          | Yes          | Static     | Water Storage | 316.2   | 312.86     | 307.4   | -8.86   |
| MA-K030     | Cope Lake  | K30/ Cope Lake  | 370         | 240        | 130     | 233.9   | Reclaimed     | MA-K030   | 188.2         | No           | Lined      | Settling Pond | 333.4   | NM         | 331.3   | -2.06   |
| MA-K032     |            | K32             | 360         | 335        | 25      | 34.2    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K033     |            | K33             | 360         | 335        | 25      | 12.8    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-K037     | Lake I     | K37/ Lake I     | 360         | 220        | 140     | 300.8   | Reclaimed     | MA-K037   | 258.8         | Yes          | Elevated   | Water Storage | 314.8   | 311.014    | 302.8   | -12.06  |




### **TABLE 4-1** SEMIANNUAL WATER LEVELS IN MINING AREA PONDS **2020 WATER YEAR**

| EXCAVATIONS |             |                  |             |        |         |         |               |           | CURRENT PONDS |              |            |               |         |            |         |         |
|-------------|-------------|------------------|-------------|--------|---------|---------|---------------|-----------|---------------|--------------|------------|---------------|---------|------------|---------|---------|
|             |             |                  |             | Deepes | t Mined | Pit     |               |           | Pond          |              |            |               |         | Pond El    | evation |         |
| Excavation  | Chain of    | Display Name     | Original    | Dept   | h (ft)  | Area    | Mining Status | Pond Name | Area          | Contact      | Water Elev | Mining Use    |         | (ft MSL, I | NAVD88  | )       |
|             | Lake        |                  | Ground Elev | Elev   | Depth   | (acres) |               |           | (acres)       | with Aquifer | Status     |               | Fall 19 | Spring 20  | Fall 20 | WY Diff |
|             |             |                  | •           |        |         | PACIFIC | LONESTAR/C    | EMEX      |               |              |            |               |         |            |         |         |
| MA-P001     |             | P1               | 380         | 360    | 20      | 8.0     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P002     |             | P2               | 380         | 360    | 20      | 1.9     | Excavated     | MA-P002   | 1.2           | Yes          | Elevated   | Water Storage | NM      | NM         | NM      |         |
| MA-P003     |             | P3               | 400         | 360    | 40      | 8.5     | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P004     |             | P4               | 400         | 360    | 40      | 7.8     | Excavated     |           |               |              |            |               |         |            |         |         |
| MA-P006     |             | P6               | 380         | 280    | 100     | 28.8    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P007     |             | P7               | 380         | 280    | 100     | 16.7    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P010     |             | P10              | 400         | 340    | 60      | 34      | Excavated     | MA-P010   | 16.5          | Yes          | Static     | Unused        | 363.8   | 365.31     | 361     | -2.81   |
| MA-P011     |             | P11              | 380         | 340    | 40      | 6.9     | Excavated     |           |               |              |            |               |         |            |         |         |
| MA-P012     | Island Pond | P12/ Island Pond | 360         | 330    | 30      | 29.5    | Excavated     | MA-P012   | 14.9          | Yes          | Lined      | Unused        | 351.4   | 351.48     | 349.5   | -1.97   |
| MA-P013     |             | P13              | 380         | 300    | 80      | 2.6     | Backfilled    | MA-P013   | 1             | Yes          | Elevated   | Water Storage | NM      | NM         | NM      |         |
| MA-P021     |             | P21              | 380         | 240    | 140     | 10.5    | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P027     |             | P27              | 390         | 250    | 140     | 31      | Excavated     | MA-P027   | 10.1          | Yes          | Static     | Water Storage |         | 279.56     | 277.4   | -2.97   |
| MA-P028     | Lake A      | P28/Lake A       | 420         | 360    | 60      | 24.6    | Reclaiming    | MA-P028   | 8.2           | Yes          | Static     | Water Storage | 407.3   | 411.42     | 406.3   | -1.01   |
| MA-P034     |             | P34              | 380         | 270    | 110     | 46      | Backfilled    |           |               |              |            |               |         |            |         |         |
| MA-P039     | Lake B      | P39/ Lake B      | 410         | 380    | 30      | 36.4    | Active Mining |           |               |              |            |               |         |            |         |         |
| MA-P040     |             | P40              | 390         | 260    | 130     | 14.5    | Excavated     | MA-P040   | 0.2           | Yes          | Static     | Unused        | NM      | NM         | NM      |         |
| MA-P041     | Lake A      | P41/ Lake A      | 410         | 370    | 40      | 91.3    | Reclaiming    | MA-P041   | 57.5          | Yes          | Static     | Water Storage | 412.2   | 413.68     | 411.7   | -0.52   |
| MA-P042     | Lake B      | P42/ Lake B      | 380         | 250    | 130     | 101.8   | Active Mining | MA-P042   | 8.6           | Yes          | Depressed  | Dewatering    | 292.9   | 286.39     | 255.8   | -37.16  |
| MA-P043     |             | P43              | 390         | 240    | 150     | 130.9   | Excavated     | MA-P043   | 99.4          | No           | Lined      | Settling Pond | NM      | NM         | NM      |         |
| MA-P044     |             | P44              | 390         | 250    | 140     | 20      | Excavated     | MA-P044   | 15            | Yes          | Elevated   | Water Storage | 352.9   | 352.73     | 345     | -7.91   |
| MA-P045     |             | P45              | 380         | 310    | 70      | 25      | Excavated     | MA-P045   | 17.7          | Yes          | Elevated   | Water Storage | NM      | NM         | NM      |         |
| MA-P046     | Lake J      | P46/ Lake J      | 380         | 251    | 129     | 23.8    | Active Mining | MA-P046   | 7.5           | Yes          | Depressed  | Active Mining | NM      | 285.98     | 294     |         |



### **TABLE 4-2** WATER QUALITY RESULTS FOR SELECT METALS AND MINERALS **2020 WATER YEAR**

| TEM      |        |       |      | EC       |     | Mineral Constituents (mg/L) |    |    |     |      |     |     |       |      | Select Metals (ug/L) |     |       |     | TDS  | Hard |
|----------|--------|-------|------|----------|-----|-----------------------------|----|----|-----|------|-----|-----|-------|------|----------------------|-----|-------|-----|------|------|
| SITE ID  | DATE   | Ву    | °C   | umhos/cm | рН  | Ca                          | Mg | Na | K   | нсоз | SO4 | CI  | NO3N  | SiO2 | В                    | As  | Fe    | Cr  | mg/L | mg/L |
| MA-C001  | 5/6/20 | ZONE7 | 26.3 | 846      | 9   | 34                          | 50 | 77 | 3.1 | 222  | 37  | 150 | < 0.1 | 0.9  | 400                  | 6.5 | < 200 | < 2 | 478  | 291  |
| MA-K015  | 5/7/20 | ZONE7 | 25   | 711      | 8.7 | 32                          | 31 | 76 | 4   | 202  | 56  | 96  | < 0.1 | 5.4  | 440                  | 2.2 | < 100 | < 1 | 407  | 206  |
| MA-K018  | 5/7/20 | ZONE7 | 23.9 | 434      | 8.8 | 31                          | 16 | 36 | 1.4 | 135  | 37  | 50  | < 0.1 | 5.4  | 200                  | 1   | < 100 | < 1 | 250  | 145  |
| MA-K028  | 5/6/20 | ZONE7 | 24.4 | 865      | 8.6 | 34                          | 54 | 83 | 2.6 | 290  | 53  | 121 | < 0.1 | 6.4  | 660                  | 6.9 | 1660  | 4.8 | 508  | 307  |
| MA-K030  | 5/6/20 | ZONE7 | 21   | 648      | 8.8 | 38                          | 38 | 45 | 2.3 | 219  | 48  | 88  | 0.15  | 11.3 | 300                  | 2.2 | < 100 | 1.2 | 389  | 251  |
| MA-K037  | 5/6/20 | ZONE7 | 20.4 | 728      | 8.7 | 38                          | 43 | 54 | 2.2 | 235  | 50  | 99  | < 0.1 | 7.5  | 400                  | 6.1 | < 200 | < 2 | 420  | 271  |
| MA-P010  | 5/6/20 | ZONE7 | 27.3 | 403      | 9.4 | 19                          | 18 | 41 | 2.2 | 120  | 18  | 52  | < 0.1 | 1.7  | 210                  | 5.1 | 532   | < 2 | 233  | 122  |
| MA-P012  | 5/7/20 | ZONE7 | 22.6 | 464      | 8.5 | 36                          | 17 | 39 | 1.7 | 153  | 38  | 53  | < 0.1 | 6    | 220                  | < 1 | < 100 | < 1 | 269  | 157  |
| MA-P027  | 5/7/20 | ZONE7 | 21.9 | 630      | 8.5 | 41                          | 24 | 58 | 1.6 | 174  | 50  | 96  | < 0.1 | 9.2  | 380                  | < 1 | < 100 | < 1 | 371  | 201  |
| MA-P028  | 5/7/20 | ZONE7 | 23.6 | 951      | 8.8 | 36                          | 47 | 98 | 3.2 | 242  | 40  | 176 | < 0.1 | 2.1  | 430                  | 2.6 | < 100 | < 1 | 530  | 281  |
| MA-P041  | 5/7/20 | ZONE7 | 23.8 | 999      | 8.8 | 36                          | 45 | 94 | 2.8 | 244  | 41  | 156 | < 0.1 | 3    | 390                  | 5.7 | < 200 | < 2 | 507  | 273  |
| MA-P042  | 5/7/20 | ZONE7 | 22   | 585      | 8.3 | 48                          | 21 | 49 | 1.6 | 203  | 44  | 69  | < 0.1 | 11.3 | 310                  | < 1 | < 100 | < 1 | 348  | 206  |
| MA-P042A | 5/7/20 | ZONE7 | 21.5 | 614      | 8.3 | 50                          | 21 | 53 | 1.7 | 207  | 43  | 75  | < 0.1 | 17.3 | 280                  | 4.2 | 1630  | 5.2 | 366  | 214  |
| MA-P044  | 5/7/20 | ZONE7 | 22.1 | 616      | 8.6 | 44                          | 23 | 54 | 1.9 | 190  | 48  | 84  | < 0.1 | 10.5 | 360                  | 1.3 | < 100 | < 1 | 366  | 205  |
| MA-P046  | 5/7/20 | ZONE7 | 22.7 | 807      | 8   | 68                          | 33 | 58 | 2.3 | 279  | 51  | 98  | 0.86  | 16.1 | 430                  | < 1 | < 100 | < 1 | 470  | 306  |
| MA-R003  | 5/6/20 | ZONE7 | 20.7 | 736      | 8.3 | 40                          | 39 | 51 | 2.8 | 227  | 47  | 102 | < 0.1 | 15.6 | 350                  | 5.4 | 1830  | 6.6 | 413  | 262  |
| MA-R004  | 5/6/20 | ZONE7 | 22.6 | 667      | 8.6 | 41                          | 35 | 44 | 2.1 | 215  | 44  | 87  | 0.47  | 15.6 | 300                  | 3.7 | < 200 | 3   | 385  | 246  |
| MA-R022  | 5/6/20 | ZONE7 | 23.7 | 681      | 8.6 | 37                          | 41 | 43 | 2.1 | 216  | 46  | 88  | 0.86  | 19   | 300                  | < 1 | 390   | 4.4 | 394  | 263  |
| MA-R023  | 5/6/20 | ZONE7 | 23   | 685      | 8.5 | 40                          | 42 | 43 | 2   | 233  | 45  | 88  | 0.69  | 16.9 | 300                  | 4.2 | 511   | 4.8 | 400  | 275  |
| MA-R024A | 5/6/20 | ZONE7 | 22.6 | 723      | 8.7 | 33                          | 52 | 45 | 2   | 221  | 46  | 91  | 1.64  | 23.5 | 350                  | 4   | < 200 | 5.6 | 419  | 298  |
| MA-R028  | 5/6/20 | ZONE7 | 19.6 | 647      | 8.1 | 57                          | 24 | 41 | 1.5 | 216  | 43  | 79  | 0.98  | 19.5 | 290                  | 3.6 | 513   | 5   | 377  | 242  |



# 5 Surface Water-Groundwater Interaction

# 5.1 Program Description

# **5.1.1** Monitoring Network

Background information regarding this program is provided in *Section 3.3.5, Surface Water-Groundwater Interaction* of the Alternative GSP. The Alternative GSP identified the Springtown Alkali Sink in the May and Spring Subareas as the only known area in the Livermore Valley Groundwater Basin that is thought to be a Groundwater Dependent Ecosystem (GDE) for the purposes of SGMA. Additional potential GDEs are being investigated for the Five-Year Update of the Alternative GSP.

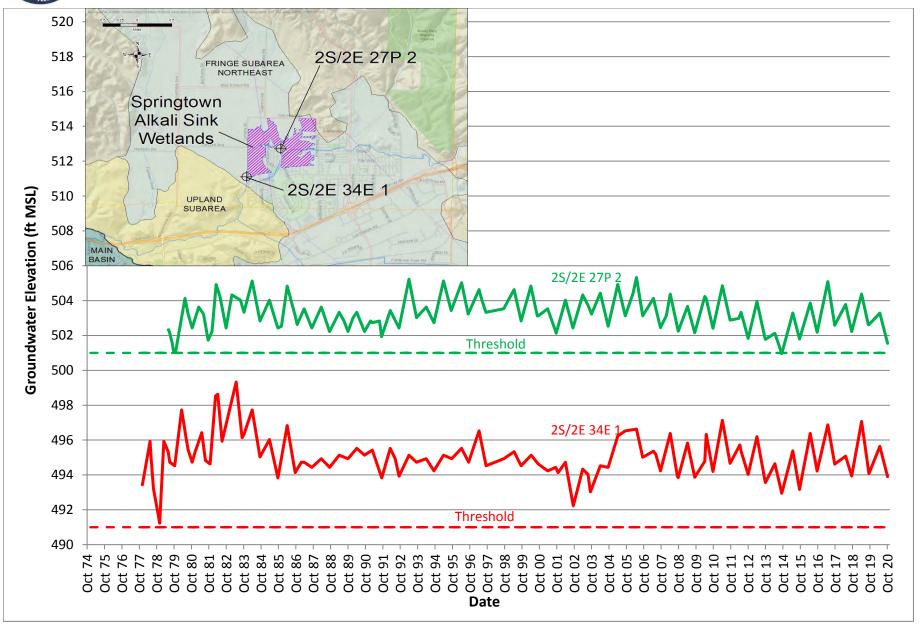
In the Springtown Alkali Sink, the contribution of groundwater to surface water features is limited and the effects are seasonal. The Alkali Sink supports an alkali-saline wetland habitat with seasonal surface ponding and shallow, seasonal, high-salinity groundwater. Salt-tolerant plants, vernal pool biota, and several protected species including the Palmate-Bracted Bird's Beak, California tiger salamander, and the fairy shrimp are found in the Alkali Sink area. The Alkali Sink has long been a focus of preservation and restoration efforts (including collaboration by Zone 7 with other agencies). The basic method for avoiding undesirable effects on the Alkali Sink is the preservation of natural groundwater levels and flow patterns, as there are no major groundwater extractors in this portion of the basin.

Zone 7 monitors groundwater levels in two wells located in the vicinity of the Alkali Sink to ensure groundwater levels remain sufficiently high to support the Alkali Sink:

- Well 2S/2E 34E 1 (34E1) is located at the southwestern, lower end of the sink.
- Well 2S/2E 27P 2 (27P2) is in the center portion of the sink.

The relative monitoring well locations can be seen in *Figure 5-1*. As part of its Groundwater Elevation Program (*Section 6, Groundwater Elevations*), Zone 7 also measures water levels in several other wells to monitor groundwater flow patterns in that portion of the Fringe Area.

### 5.1.2 Program Changes for the Water Year


There were no changes to this program for the 2020 WY.

### 5.2 Results for the 2020 WY

Ongoing monitoring by Zone 7 has verified steady groundwater levels and no increase in surface water depletion in the Alkali Sink since the late 1970s. *Figure 5-1* shows the hydrographs for the two monitored wells in the immediate vicinity of the Alkali Sink. As demonstrated by the hydrographs, groundwater levels continued to be above the wells' respective Minimum Threshold elevations (501 ft msl for 27P2 and 491 ft msl for 34E1) during the 2020 WY and within the range of normal elevation fluctuations (0.5 to 5 feet above the Minimum Threshold elevations). The gradient flow patterns in the area are shown on *Figure 6-4* (Spring 2020) and *Figure 6-5* (Fall 2020) and continue to remain relatively unchanged throughout its recorded history.



# FIGURE 5-1 HYDROGRAPHS IN THE VICINITY OF THE ALKALI SINK AND SPRINGTOWN SPRINGS LIVERMORE VALLEY GROUNDWATER BASIN



# 6 Groundwater Elevations

# **6.1 Program Description**

# **6.1.1** Monitoring Network

Background information regarding the Groundwater Elevation Monitoring Program is provided in *Sections 3.3.1 and 4.5* of the Alternative GSP. This program includes the measurement of groundwater levels in monitoring and production wells to confirm that management objectives are met, to assess groundwater supplies, and to define any new management objectives needed to maintain sustainability. The program focuses on the Main Basin, where groundwater is pumped for municipal uses; however, water levels are also measured in the Fringe and Upland Areas.

As shown in *Figure 6-1* and *Table 6-1*, there were 221 wells in the Zone 7 Groundwater Elevation Monitoring Program for the 2020 WY. Well construction details for the program wells are shown in *Table 6-2*. Groundwater elevations (shown in feet above Mean Sea Level [msl]) in most of these wells were measured at least two times during the water year (spring and fall, *Table 6-3*).

Water levels were also measured once per month in eight key index monitoring wells ("Key Wells") located in the central parts of the three largest subareas of the Main Basin (Bernal, Amador, and Mocho II); where the municipal pumping occurs. Because the Amador Subarea is more than twice the size of the other two subareas, it is split into the Amador West and Amador East Subareas. Each subarea is represented by an Upper and Lower Aquifer Key Well.

Spring and fall results from these eight Key Wells are combined with spring and fall water level data from three additional monitoring wells to satisfy Zone 7's California Statewide Groundwater Elevation Monitoring (CASGEM) Program obligation. An additional well (3S/2E 29F 4) was voluntarily added in 2019 at the request of a member of the public. The wells currently being monitored for the Key Well and CASGEM Programs are shown in *Table 6-A* below and *Figure 6-2*.

Zone 7 Water Agency 6 Groundwater Elevations

**Well Number** Subarea Aquifer **Key Well** CASGEM 3S/1E 20C 7 Bernal Upper Х Х Bernal 3S/1E 20C 8 Lower Х Х 3S/1E 9P 5 **Amador West** Upper Х Х 3S/1E 9P10 **Amador West** Lower Х Х 3S/1E 11G 1 **Amador East** Upper Χ Х 3S/1E 12K 3 **Amador East** Lower Х Х 3S/2E 8K 2 Mocho II Upper Х Х 3S/2E 8H 3 Mocho II Lower Х Х 3S/1E 12K 4 Amador East Lower Х 3S/1E 6F 3 Northern Fringe Upper Х 3S/2E 19D 7 Southern Amador Lower Х 3S/2E 29F 4\* Southern Amador Upper Х

Table 6-A: Table of Key and CASGEM Wells for the 2020 Water Year

# 6.1.2 Program Changes for the 2020 Water Year

Table 6-B below lists the changes that were made to the Groundwater Elevation Monitoring Program for the 2020 WY. These changes are also applicable to the Groundwater Quality Monitoring Program, which is discussed in Section 7, Groundwater Quality of this Annual Report.

Table 6-B: Program Wells Changes during the 2020 Water Year

| Action               | Reason    | Note                         |  |  |  |  |
|----------------------|-----------|------------------------------|--|--|--|--|
| Well 3S/3E 6Q 4      | Well was  | 3S/3E 6Q 3 still in program  |  |  |  |  |
| Removed from program | destroyed | 33/3E 0Q 3 Still III program |  |  |  |  |

### 6.2 Results for the 2020 Water Year

### 6.2.1 Overview

Groundwater levels for the 2020 WY followed a typical historical seasonal pattern: rising in the beginning of the year with rainfall recharge and minimal pumping occurring, levelling off in late spring, and then dropping during the second half of the water year as rainfall ceased and pumping demands increased. Compared to the levels at the end of the 2019 WY where the basin was largely full, groundwater elevations generally decreased everywhere in the Main Basin. In general, groundwater elevations remained well above the threshold elevations (historic lows). However, mining area dewatering operations created a localized depression in groundwater

<sup>\* =</sup> Voluntary CASGEM monitoring well.

Zone 7 Water Agency 6 Groundwater Elevations

levels that exceeded the historic low in two of the mining area pits as discussed in *Section 4.2.1* above and *Section 6.2.3* below. Zone 7 continues to monitor this area's impact and relationship to the rest of the basin with respect to storage and subsidence. The impacts appear to be very localized and more information on subsidence monitoring can be found in *Section 8 Land Surface Elevation* of this report.

Graphs of Key Well water levels (*Figure 6-3*) demonstrate the annual seasonal trends in both the Upper and Lower Aquifer systems. The seasonal fluctuations are greater in the Lower Aquifer where more pumping occurs to meet seasonal demands in the warmer months, and when surface water treatment plant outages occur. Key Well water levels in all subareas ended the 2020 WY at least 5 feet below those from the previous year (*Table 6-C*).

Table 6-C: Groundwater Elevation Change in Key & CASGEM Wells from Fall 2019 to Fall 2020

|             |            | Grour          | dwater          | Change in Elevation (feet)  |                             |                           |  |  |  |  |
|-------------|------------|----------------|-----------------|-----------------------------|-----------------------------|---------------------------|--|--|--|--|
|             |            |                | ation<br>t msl) | Sea                         | Annual                      |                           |  |  |  |  |
| Well        | Name       | Spring<br>2020 | Fall<br>2020    | Fall 2019 to<br>Spring 2020 | Spring 2020 to<br>Fall 2020 | Fall 2019 to<br>Fall 2020 |  |  |  |  |
| 3S/1E 20C 8 | Key_Bern_U | 296.8          | 290.1           | -0.8                        | -6.6                        | -7.5                      |  |  |  |  |
| 3S/1E 20C 9 | Key_Bern_L | 296.1          | 286.5           | -1.5                        | -9.6                        | -11.1                     |  |  |  |  |
| 3S/1E 9P 9  | Key_AMW_U  | 302.2          | 294.5           | -3.2                        | -7.7                        | -10.9                     |  |  |  |  |
| 3S/1E 9P11  | Key_AMW_L  | 292.0          | 270.7           | -2.4                        | -21.3                       | -23.7                     |  |  |  |  |
| 3S/1E 11G 2 | Key_AME_U  | 314.9          | 306.4           | -2.3                        | -8.5                        | -10.8                     |  |  |  |  |
| 3S/1E 12K 4 | Key_AME_L  | 267.7          | 254.4           | -1.6                        | -13.3                       | -14.9                     |  |  |  |  |
| 3S/2E 8N 2  | Key_MO2_U  | 433.3          | 423.5           | 1.0                         | -9.9                        | -8.9                      |  |  |  |  |
| 3S/2E 8H 4  | Key_MO2_L  | 431.5          | 421.2           | 4.8                         | -10.3                       | -5.5                      |  |  |  |  |
| 3S/1E 12K 4 |            | 288.1          | 259.7           | -0.2                        | -28.4                       | -28.6                     |  |  |  |  |
| 3S/1E 6F 3  |            | 325.4          | 324.6           | 0.7                         | -0.8                        | -0.1                      |  |  |  |  |
| 3S/2E 19D 7 |            | 313.8          | 306.3           | -10.4                       | -7.6                        | -18.0                     |  |  |  |  |
| 3S/2E 29F 4 |            | 449.3          | 446.5           | 0.1                         | -2.8                        | -2.8                      |  |  |  |  |

msl = mean sea level

Table 6-3 contains spring high (generally collected in April) and fall low (generally collected in September) groundwater elevations for all program wells and includes a comparison with fall of the previous water year. Upper and Lower Aquifer levels during the 2020 WY are described in more detail in Sections 6.2.2 and 6.2.3 below; however, for more information on general groundwater gradient and water level trends, see Section 2.3.3, Groundwater Occurrence and Flow, and Section 2.3.4, Groundwater Levels, of the Alternative GSP.

Zone 7 Water Agency 6 Groundwater Elevations

# 6.2.2 Upper Aquifer Levels

Figure 6-4 and Figure 6-5 show groundwater elevation contours in the Upper Aquifer for the spring and fall of the 2020 WY, representing the highest and lowest groundwater elevations observed, respectively. The groundwater gradient in the Upper Aquifer was generally from east to west and ranged from 0.005 to 0.025 ft/ft. Quarry dewatering operations in the eastern Amador Subarea create groundwater depressions in pits where water is pumped and mounds in pits that are not clay-lined and where excess water is stored. The water from the dewatering of Lakes B (P42) and J (P46) was discharged into other adjacent clay-lined mining pits; while the water from Lakes D and E was eventually discharged into Cope Lake, after which it was conveyed into Lake I and was recharged back into the groundwater basin.

During the first half of the 2020 WY, water levels in wells in the southwestern portion of the Basin near the Arroyo de la Laguna (as indicated primarily by the Bernal Upper Key Well, 3S/1E 20C 7 and Well 3S/1E 29M 4) were slightly above the upper threshold elevation at which basin overflow occurs. Consequently, approximately 146 AF (*Section 11, Groundwater Storage*) of water overflowed from the Upper Aquifer into the Arroyo de la Laguna during the 2020 WY and exited the valley.

Figure 6-6 illustrates the change in groundwater elevation in the Upper Aquifer from Fall 2019 to Fall 2020. Figure 6-7 shows the depth to the top of the Upper Aquifer groundwater table at the end of the 2020 WY. Upper Aquifer water levels generally dropped throughout the Main Basin by an average of 5 to 10 feet in each of the subbasins because of mining activity and below-average rainfall and artificial stream recharge (see Section 11.1.4). A notable exception occurred in mining pond R24A (future Chain of Lake E) where the water level rose more than 50 feet when the mining company (Vulcan) ceased pond dewatering (see Section 4.2.1).

Groundwater levels in the Fringe Areas (which contain only one aquifer layer) stayed relatively constant throughout 2020 WY, generally varying by less than 5 ft (*Figure 6-6*). For more information regarding historic elevations and trends observed for the Fringe Area and Subareas, refer to *Section 2.2.2.4*, *Fringe Management Area and Subareas*, of the Alternative GSP.

# 6.2.3 Lower Aquifer Levels

Figure 6-8 and Figure 6-9 show groundwater elevation contours in the Lower Aquifer for the spring high and fall low of the 2020 WY, respectively. In general, the groundwater gradient runs toward the center of the basin where there are piezometric depressions created around several municipal wellfields and three mining pits (Lakes B, D, and E) that appear to extend into the lower aquifer. The lowest groundwater elevation in the Lower Aquifer corresponded to the pond in mining excavation for Lake D (R28 at 168 ft above msl). The westernmost CWS municipal supply wells (CWS 20 and CWS 24) also pull groundwater from this portion of the subarea.

Zone 7 Water Agency 6 Groundwater Elevations

There appears to be a mound in the lower aquifer of about 10 feet underneath Lake I. This mound suggests that the diversion of excess mined water into Lake I (via Cope Lake, see *Sections 4.2.3* and 6.2.2) since 2014 is impacting the lower aquifer.

As is usually the case, groundwater elevations in the Mocho II Subarea during the 2020 WY were about 60 to 90 ft higher than those to the west, across the Livermore Fault in the Amador Subarea. Deep groundwater elevations in the Dublin/Camp/Bishop Fringe Subareas were 15–30 ft higher than those across the Main Basin Boundary to the south.

Figure 6-10 shows the change in groundwater elevation in the Lower Aquifer from Fall 2019 to Fall 2020. Lower Aquifer water levels dropped significantly (up to about 45 feet) in portions of the Basin from Fall 2019 to Fall 2020 from below average recharge (rainfall and stream), above average municipal pumping, and deeper mining activity.

Figure 6-11 shows the height of lower aquifer groundwater levels above historic lows at the end of the 2020 WY. Groundwater levels in the vicinity of the Bernal Subarea were up to about 110 ft above the historic low. In the Amador Subarea, levels were generally 25–90 ft above the historic lows except in the immediate vicinity of two mining excavations that were being dewatered during the 2020 WY; the water level in Lake B (P42) was 2 ft below the historic low, while Lake D (R28) was about 45 ft below the historic low. Over the central portion of the Mocho II Subarea where there is municipal pumping, the end-of-year groundwater levels were 50–135 ft above historical lows. Other portions of the Mocho II Subarea, not affected by the municipal pumping, remained relatively stable at or slightly above historic lows.



## TABLE 6-1 GROUNDWATER ELEVATION PROGRAM WELLS WITH MONITORING FREQUENCY 2020 WATER YEAR

| SITE INFO  | RMATION                      |          |    | Montoring |     | Other GW Elevation Programs    CASGEM   GW/SW   WR   M |          |    |      |
|------------|------------------------------|----------|----|-----------|-----|--------------------------------------------------------|----------|----|------|
| State Name | Well Name                    | Subbasin | Aq | Frequency | Key | <b>CASGEM</b>                                          | GW/SW    | WR | Muni |
| 1S4E31P005 | CASGEM Tracy WAPA            | Tracy    | U  | 2         |     |                                                        |          |    |      |
| 2S1E32E001 | End of Arnold Rd             | None     | U  | 2         |     |                                                        |          |    |      |
| 2S1E32N001 | Camp Parks                   | Camp     | U  | 2         |     |                                                        |          |    |      |
| 2S1E32Q001 | Summer Glen Dr               | Camp     | U  | 2         |     |                                                        |          |    |      |
| 2S1E33L001 | Gleason Dr @ Tassajara       | None     | U  | 2         |     |                                                        |          |    |      |
| 2S1E33P002 | Central Pkwy at Emerald Glen | Camp     | U  | 2         |     |                                                        |          |    |      |
| 2S1E33R001 | Central Pkwy @ Grafton       | None     | U  | 2         |     |                                                        |          |    |      |
| 2S1W15F001 | BOLLINGER                    | Bishop   | U  | 2         |     |                                                        |          |    |      |
| 2S1W26C002 | PINE VALLEY                  | Dublin   | U  | 2         |     |                                                        |          |    |      |
| 2S1W36E003 | Kolb Park                    | Dublin   | U  | 2         |     |                                                        |          |    |      |
| 2S1W36F001 | Dublin High shallow          | Dublin   | L  | 2         |     |                                                        |          |    |      |
| 2S1W36F002 | Dublin High mid              | Dublin   | L  | 2         |     |                                                        |          |    |      |
| 2S1W36F003 | Dublin High deep             | Dublin   | L  | 2         |     |                                                        |          |    |      |
| 2S2E27C002 | Dagnino Rd                   | Spring   | U  | 2         |     |                                                        |          |    |      |
| 2S2E27P002 | hartford ave east            | Spring   | U  | 2         |     |                                                        | <b>V</b> |    |      |
| 2S2E28D002 | May School                   | May      | U  | 2         |     |                                                        |          |    |      |
| 2S2E28J002 | FCC Well                     | May      | L  | 2         |     |                                                        |          |    |      |
| 2S2E28Q001 | hartford ave                 | May      | U  | 2         |     |                                                        |          |    |      |
| 2S2E32K002 | jenson's N liv. Ave          | Cayetano | U  | 2         |     |                                                        |          |    |      |
| 2S2E34E001 | Mud City                     | May      | U  | 2         |     |                                                        | <b>V</b> |    |      |
| 2S2E34Q002 | Hollyhock & Crocus           | Spring   | U  | 2         |     |                                                        |          |    |      |
| 2S3E01D001 | CASGEM Tracy PGE             | Tracy    | U  | 2         |     |                                                        |          |    |      |
| 3S1E01F002 | Constitution Dr              | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E01H003 | Collier Canyon g1            | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E01J003 | Triad Vineyard               | Camp     | L  | 12        |     |                                                        |          |    |      |
| 3S1E01J004 | Collier Vineyards            | Camp     | L  | 2         |     |                                                        |          |    |      |
| 3S1E01L001 | Kitty Hawk                   | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E01P002 | Airport gas g5               | Amador   | U  | 2         |     |                                                        |          |    |      |
| 3S1E01P003 | New airport well             | Amador   | L  | 2         |     |                                                        |          |    |      |
| 3S1E02J002 | Maint. Bldg                  | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E02J003 | Doolan Rd East               | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E02K002 | Doolan Rd West               | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E02M003 | Friesman Rd North            | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E02N006 | Friesman Rd South            | Amador   | U  | 2         |     |                                                        |          |    |      |
| 3S1E02P003 | Crosswinds Church            | Camp     | L  | 2         |     |                                                        |          |    |      |
| 3S1E02Q001 | LPGC #1                      | Amador   | U  | 2         |     |                                                        |          |    |      |
| 3S1E02R001 | Beebs                        | Amador   | U  | 2         |     |                                                        |          |    |      |
| 3S1E03G002 | fallon rd                    | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E04A001 | SMP-DUB-2                    | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E04J005 | Pimlico shallow              | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E04J006 | Pimlico deep                 | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E04Q002 | gulfstream                   | Amador   | U  | 2         |     |                                                        |          |    |      |
| 3S1E05K006 | Rosewood shallow             | Camp     | U  | 2         |     |                                                        |          |    |      |
| 3S1E05K007 | Rosewood deep                | Camp     | L  | 2         |     |                                                        |          |    |      |

| SITE INFO                | RMATION                                |          |          | Montoring |          | Other GW | Elevation | ı Progra | ms                                               |
|--------------------------|----------------------------------------|----------|----------|-----------|----------|----------|-----------|----------|--------------------------------------------------|
| State Name               | Well Name                              | Subbasin | Aq       | Frequency | Key      | CASGEM   | GW/SW     | WR       | Muni                                             |
| 3S1E05L003               | Oracle                                 | Camp     | U        | 2         |          |          |           |          |                                                  |
| 3S1E05P006               | Owens Park                             | Camp     | U        | 2         |          |          |           |          |                                                  |
| 3S1E06F003               | Dublin Ct                              | Dublin   | U        | 2         |          | V        |           |          |                                                  |
| 3S1E06G005               | Nissan Repair                          | Dublin   | L        | 2         |          |          |           |          | †                                                |
| 3S1E06N002               | DSRSD MW-3                             | Dublin   | U        | 2         |          |          |           |          |                                                  |
| 3S1E07B002               | Hopyard rd                             | Dublin   | L        | 2         |          |          |           |          |                                                  |
| 3S1E07B012               | Hacienda Arch                          | Dublin   | U        | 2         |          |          |           |          |                                                  |
| 3S1E07G007               | Chabot Well                            | Dublin   | U        | 2         |          |          |           |          | †                                                |
| 3S1E07J005               | Thomas Hart School                     | Dublin   | U        | 2         |          |          |           |          |                                                  |
| 3S1E08B001               | Lizard Well                            | Amador   | U        | 2         |          |          |           |          |                                                  |
| 3S1E08G004               | Apache                                 | Amador   | U        | 2         |          |          |           |          |                                                  |
| 3S1E08H009               | Mocho 4 Nested Shallow                 | Amador   | L        | 2         |          |          |           |          | †                                                |
| 3S1E08H010               | Mocho 4 Nested Middle                  | Amador   | L        | 2         |          |          |           |          | 1                                                |
| 3S1E08H011               | Mocho 4 Nested deep                    | Amador   | D        | 2         |          |          |           |          | 1                                                |
| 3S1E08H013               | Mocho 3 mon                            | Amador   | D        | 2         |          |          |           |          | +                                                |
| 3S1E08H018               | Mocho 4                                | Amador   | L        | 2         |          |          |           |          | √                                                |
| 3S1E08K001               | Cockroach well                         | Amador   | U        | 2         |          |          |           |          | <del>                                     </del> |
| 3S1E08N001               | sports park                            | Bernal   | U        | 2         |          |          |           |          | +                                                |
| 3S1E09H010               | NW Lake I Shallow                      | Amador   | U        | 2         |          |          |           |          | +                                                |
| 3S1E09H011               | NW Lake I Deep                         | Amador   | L        | 2         |          |          |           |          | +                                                |
| 3S1E09J007               | SW Lake I Shallow                      | Amador   | U        | 2         |          |          |           |          | 1                                                |
| 3S1E09J008               | SW Lake I Middle                       | Amador   | L        | 2         |          |          |           |          | 1                                                |
| 3S1E09J009               | SW Lake I Deep                         | Amador   | <br>L    | 2         |          |          |           |          | <del>                                     </del> |
| 3S1E09J009<br>3S1E09M002 | Mocho 1                                | Amador   |          | 2         |          |          |           |          | √                                                |
|                          |                                        |          | L        | 2         |          |          |           |          | \ \ \                                            |
| 3S1E09M003               | Mocho 2<br>Mocho 3                     | Amador   | L        | 2         |          |          |           |          | \ \ \                                            |
| 3S1E09M004               |                                        | Amador   | L        | 12        | <b>√</b> | √        |           |          | - V                                              |
| 3S1E09P005               | Key_AmW_U (Mohr Key)  Mohr Ave Shallow | Amador   | U        |           | ٧        | V        |           |          | +                                                |
| 3S1E09P009               |                                        | Amador   | L        | 12        | <b>√</b> | -1       |           |          | <del>                                     </del> |
| 3S1E09P010               | Key_AmW_L                              | Amador   | L        | 12        | ٧        | √        |           |          | <del>                                     </del> |
| 3S1E09P011               | Mohr Ave Deep                          | Amador   | L        | 12        |          |          |           |          | +                                                |
| 3S1E10A002               | El C harro Rd                          | Amador   | U        | 2         |          |          |           |          | +                                                |
| 3S1E10B008               | Kaiser Rd Shallow                      | Amador   | L        | 2         |          |          |           |          |                                                  |
| 3S1E10B009               | Kaiser Rd Middle 1                     | Amador   | L        | 2         |          |          |           |          | <del>                                     </del> |
| 3S1E10B010               | Kaiser Rd Middle 2                     | Amador   | L        | 2         |          |          |           |          |                                                  |
| 3S1E10B011               | Kaiser Rd Deep                         | Amador   | D        | 2         |          |          |           |          | 1                                                |
| 3S1E10B014               | COL 5 Monitoring                       | Amador   | L .      | 2         |          |          |           |          | 1                                                |
| 3S1E10D002               | Stoneridge Shallow                     | Amador   | L        | 2         |          |          |           |          | <del> </del>                                     |
| 3S1E10D003               | Stoneridge Middle 1                    | Amador   | <u>L</u> | 2         |          |          |           |          |                                                  |
| 3S1E10D004               | Stoneridge Middle 2                    | Amador   | L        | 2         |          |          |           |          | <u> </u>                                         |
| 3S1E10D005               | Stoneridge Deep                        | Amador   | D        | 2         |          |          |           |          | <del> </del>                                     |
| 3S1E10D007               | North Lake I Shallow                   | Amador   | U        | 2         |          |          |           |          | <del> </del>                                     |
| 3S1E10D008               | North Lake I Cluster 2                 | Amador   | L        | 2         |          |          |           |          |                                                  |
| 3S1E10K002               | COL 1 Monitoring                       | Amador   | L        | 2         |          |          |           |          | 1                                                |
| 3S1E10N002               | South Lake I Shallow                   | Amador   | U        | 2         |          |          |           |          | 1                                                |
| 3S1E10N003               | South Lake I Deep                      | Amador   | L        | 2         |          |          |           |          | <del>                                     </del> |
| 3S1E11B001               | Airport West                           | Amador   | U        | 2         |          |          |           |          |                                                  |
| 3S1E11C003               | LAVWMA ROW                             | Amador   | U        | 2         |          |          |           |          | <u> </u>                                         |
| 3S1E11G001               | Key_AmE_U                              | Amador   | U        | 12        | √        | V        |           |          | <u> </u>                                         |
| 3S1E11G002               | Rancho Charro Middle 1                 | Amador   | L        | 12        |          |          |           |          |                                                  |
| 3S1E11G003               | Rancho Charro Middle 2                 | Amador   | L        | 12        |          |          |           |          |                                                  |
| 3S1E11G004               | Rancho Charro Deep                     | Amador   | D        | 12        |          |          |           |          |                                                  |

| SITE INFO  | RMATION                   |          |        | Montoring |              | Other GW | Elevation | ı Progra | ms   |
|------------|---------------------------|----------|--------|-----------|--------------|----------|-----------|----------|------|
| State Name | Well Name                 | Subbasin | Aq     | Frequency | Key          | CASGEM   | GW/SW     | WR       | Muni |
| 3S1E11M002 | COL 2 Monitoring          | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E11P006 | New Jamieson Residence    | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E12A002 | Airport South             | Amador   | U      | 2         |              |          |           |          |      |
| 3S1E12D002 | LWRP G6                   | Amador   | U      | 2         |              |          |           |          |      |
| 3S1E12G001 | Oaks Park Shallow         | Amador   | U      | 2         |              |          |           |          |      |
| 3S1E12H004 | LWRP Shallow              | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E12H005 | LWRP Middle 1             | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E12H006 | LWRP Middle 2             | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E12H007 | LWRP Deep                 | Amador   | D      | 2         |              |          |           |          |      |
| 3S1E12K002 | Oaks Park Mid             | Amador   | L      | 12        |              |          |           |          |      |
| 3S1E12K003 | Key_AmE_L                 | Amador   | L      | 12        | <b>V</b>     | <b>√</b> |           |          |      |
| 3S1E12K004 | Oaks Park Deep            | Amador   | D      | 12        |              | √ V      |           |          |      |
| 3S1E13P005 | LGA Grant Nested 1        | Amador   | U      | 12        |              | ,        |           |          |      |
| 3S1E13P006 | LGA Grant Nested 2        | Amador   | L      | 12        |              |          |           |          |      |
| 3S1E13P007 | LGA Grant Nested 3        | Amador   | L      | 12        |              |          |           |          |      |
| 3S1E13P008 | LGA Grant Nested 4        | Amador   | L      | 12        |              |          |           |          |      |
| 3S1E14B001 | Industrial Asphalt        | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E14D001 | South Cope Lake           | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E14D002 | Kaiser #8                 | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E15F003 | shadow cliff              | Amador   |        | 2         |              |          |           |          |      |
| 3S1E153003 |                           | Amador   | L<br>L | 2         |              |          |           |          |      |
| 3S1E15W003 | Bush/Valley South         | Amador   |        | 2         |              |          |           |          |      |
|            | Bush/Valley Mid           |          | L      |           |              |          |           |          |      |
| 3S1E16B001 | Bush/Valley North         | Amador   | D      | 2         |              |          |           |          |      |
| 3S1E16C002 | Santa Rita Valley Shallow | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E16C003 | Santa Rita Valley Middle  | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E16C004 | Santa Rita Valley Deep    | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E16E004 | black ave - cultural      | Amador   | U      | 2         |              |          |           |          | 1    |
| 3S1E16L002 | Pleas 4                   | Amador   | L      | 2         |              |          |           | 1        | V    |
| 3S1E16P005 | Vervais Monitor           | Amador   | U      | 12        |              |          |           | √        |      |
| 3S1E16R001 | Stanley Berry Farm        | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E17B004 | Casterson                 | Amador   | L      | 2         |              |          |           |          |      |
| 3S1E17D003 | Hopyard Nested Shallow    | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E17D004 | Hopyard Nested Middle 1   | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E17D005 | Hopyard Nested Middle 2   | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E17D006 | Hopyard Nested Middle 3   | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E17D007 | Hopyard Nested Deep       | Bernal   | D      | 2         |              |          |           |          |      |
| 3S1E17D010 | Hopyard 7                 | Bernal   | L      | 2         |              |          |           |          | 1    |
| 3S1E17D011 | Hopyard 9 Monitoring Well | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E18A005 | Pleas 7                   | Bernal   | L      | 2         |              |          |           |          | √    |
| 3S1E18E004 | Valley Trails II          | Bernal   | U      | 2         |              |          |           |          |      |
| 3S1E18J002 | camino segura             | Bernal   | U      | 2         |              |          |           |          |      |
| 3S1E18N001 | merritt                   | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E19A010 | SFWD South (B)            | Bernal   | L      | 2         |              |          |           |          | V    |
| 3S1E19A011 | SFWD North (A)            | Bernal   | L      | 2         |              |          |           |          | √    |
| 3S1E19C004 | del valle & laguna        | Bernal   | U      | 2         |              |          |           |          |      |
| 3S1E19K001 | 680/bernal                | Bernal   | U      | 2         |              |          |           |          |      |
| 3S1E20B002 | Fairgrounds Potable       | Bernal   | L      | 2         |              |          |           |          |      |
| 3S1E20C007 | Key_Bern_U                | Bernal   | U      | 12        | $\checkmark$ | √        |           | √        |      |
| 3S1E20C008 | Key_Bern_L                | Bernal   | L      | 12        | <b>V</b>     | √        |           |          |      |
| 3S1E20C009 | Fair Nested Deep          | Bernal   | L      | 12        |              |          |           |          |      |
| 3S1E20J004 | civic center              | Bernal   | U      | 2         |              |          |           |          |      |

| SITE INFOR  | RMATION                   |             |    | Montoring |     | Other GW | Elevation | ı Progra | ms       |
|-------------|---------------------------|-------------|----|-----------|-----|----------|-----------|----------|----------|
| State Name  | Well Name                 | Subbasin    | Aq | Frequency | Key | CASGEM   | GW/SW     | WR       | Muni     |
| 3S1E20M011  | S.F "M"LINE               | Bernal      | U  | 2         |     |          |           |          |          |
| 3S1E20Q002  | 20Q2                      | Bernal      | U  | 2         |     |          |           |          |          |
| 3S1E22D002  | vineyard trailer          | Amador      | U  | 2         |     |          |           |          |          |
| 3S1E23J001  | 1627 vineyard trailer     | Amador      | L  | 2         |     |          |           |          |          |
| 3S1E24Q001  | Ruby Hills                | Amador      | L  | 2         |     |          |           |          |          |
| 3S1E25C003  | Katz Winery Mansion       | Amador      | U  | 2         |     |          |           |          |          |
| 3S1E29M004  | f.c. channel              | Castle      | U  | 12        |     |          |           | √        |          |
| 3S1E29P002  | castlewood dr             | Bernal      | U  | 2         |     |          |           | · · ·    |          |
| 3S1W01B009  | DSRSD Shallow             | Dublin      | L  | 2         |     |          |           |          |          |
| 3S1W01B010  | DSRSD Middle              | Dublin      | L  | 2         |     |          |           |          |          |
| 3S1W01B011  | DSRSD Deep                | Dublin      | L  | 2         |     |          |           |          |          |
| 3S1W02A002  | McNamara's                | Dublin      | U  | 2         |     |          |           |          |          |
| 3S1W12B002  | Stoneridge Mall Rd        | Dublin      | U  | 2         |     |          |           |          |          |
| 3S1W12J001  | DSRSD South               | Dublin      | U  | 2         |     |          |           |          |          |
| 3S1W13J001  | muirwood dr               | Castle      | U  | 2         |     |          |           |          |          |
|             |                           |             | U  | 2         |     |          |           |          |          |
| 3S2E01F002  | Brisa at Circuit City     | Spring      |    |           |     |          |           |          |          |
| 3S2E02B002  | south front rd            | Spring      | U  | 2         |     |          |           |          |          |
| 3S2E03A001  | Bluebell                  | Spring      | U  | 2         |     |          |           |          |          |
| 3S2E03K003  | first & S. front rd       | Mocho I     | U  | 2         |     |          |           |          |          |
| 3S2E05N001  | Spider Well               | Mocho II    | M  | 2         |     |          |           |          |          |
| 3S2E07C002  | jaws - york way - G4      | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E07H002  | dakota                    | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E07N002  | Isabel & Arroyo Mocho     | Amador      | U  | 2         |     |          |           |          |          |
| 3S2E07P003  | CWS 24                    | Amador      | L  | 2         |     |          |           |          | <b>V</b> |
| 3S2E07R002  | CWS 31 Monitoring         | Mocho II    | D  | 2         |     |          |           |          |          |
| 3S2E07R003  | CWS 31                    | Upland      | L  | 2         |     |          |           |          | V        |
| 3S2E08H002  | North k                   | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E08H003  | Key_Mo2_L                 | Mocho II    | L  | 12        | √   | √        |           |          |          |
| 3S2E08H004  | N Liv Ave Deep            | Mocho II    | L  | 12        |     |          |           |          |          |
| 3S2E08K002  | Key_Mo2_U (Livermore Key) | Mocho II    | U  | 12        | √   | √        |           |          |          |
| 3S2E08N002  | CWS 14                    | Mocho II    | L  | 2         |     |          |           |          | √        |
| 3S2E08P001  | CWS 8                     | Mocho II    | L  | 2         |     |          |           |          | √        |
| 3S2E08Q009  | D-2                       | Mocho II    | L  | 2         |     |          |           |          |          |
| 3S2E09Q004  | school st                 | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E10F003  | hexcel                    | Mocho I     | U  | 2         |     |          |           |          |          |
| 3S2E10Q001  | almond                    | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E10Q002  | LLNL W-703                | Mocho II    | L  | 2         |     |          |           |          |          |
| 3S2E11C001  | joan way                  | Mocho I     | U  | 2         |     |          |           |          |          |
| 3S2E12C004  | LLNL W-486                | Spring      | U  | 2         |     |          |           |          |          |
| 3S2E12J003  | LLNL W-017A               | Spring      | L  | 2         |     |          |           |          |          |
| 3S2E14A003  | S. vasco @east ave        | Mocho I     | U  | 2         |     |          |           |          |          |
| 3S2E14B001  | 5763 east ave             | Mocho I     | L  | 2         |     |          |           |          |          |
| 3S2E15E002  | Retzlaff Winery           | Mocho II    | L  | 2         |     |          |           |          |          |
| 3S2E15L001  | Concannon 2               | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E15M002  | Concannon 1               | Mocho II    | U  | 2         |     |          |           |          |          |
| 3S2E15Q006  | Concannon Old Pumping     | Mocho II    | L  | 2         |     |          |           |          |          |
| 3S2E15R017  | Buena Vista Shallow       | Mocho II    | U  | 2         |     |          |           |          | 1        |
| 3S2E15R018  | Buena Vista Deep          | Mocho II    | L  | 2         |     |          |           |          |          |
| 3S2E16A003  | Memory Gardens            | Mocho II    | L  | 2         |     |          |           |          | <u> </u> |
| 3S2E16C001  | CWS 15                    | Mocho II    | L  | 2         |     |          |           |          | √        |
| 3S2E16C001  |                           | Mocho II    | U  | 2         |     |          |           |          | V        |
| 332E 10EUU4 | pepper tree               | IVIOCTIO II | U  | ۷         |     | 1        |           |          | <u> </u> |

| SITE INFO  | RMATION                |          |    | Montoring |     | Other GW Elevation Programs  Yey   CASGEM   GW/SW   WR   Mu |                   |          |    |  |
|------------|------------------------|----------|----|-----------|-----|-------------------------------------------------------------|-------------------|----------|----|--|
| State Name | Well Name              | Subbasin | Aq | Frequency | Key | CASGEM                                                      | CASGEM GW/SW WR 1 |          |    |  |
| 3S2E17E002 | Mocho Street           | Mocho II | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E18B001 | CWS 20                 | Amador   | L  | 2         |     |                                                             |                   |          | √  |  |
| 3S2E18E001 | E. stanley             | Amador   | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E19D007 | Isabel Shallow         | Amador   | U  | 12        |     | √                                                           |                   |          |    |  |
| 3S2E19D008 | Isabel Middle 1        | Amador   | L  | 12        |     |                                                             |                   |          |    |  |
| 3S2E19D009 | Isabel Middle 2        | Amador   | L  | 12        |     |                                                             |                   |          |    |  |
| 3S2E19D010 | Isabel Deep            | Amador   | L  | 12        |     |                                                             |                   |          |    |  |
| 3S2E19N003 | Shallow Cemex Nested   | Amador   | U  | 12        |     |                                                             |                   |          |    |  |
| 3S2E19N004 | Deep Cemex Nested      | Amador   | L  | 12        |     |                                                             |                   |          |    |  |
| 3S2E20M001 | Alden Lane             | Amador   | L  | 2         |     |                                                             |                   |          |    |  |
| 3S2E22B001 | grapes                 | Mocho II | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E23E001 | Mines Nested Shallow   | Mocho II | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E23E002 | Mines Nested Deep      | Mocho II | L  | 2         |     |                                                             |                   |          |    |  |
| 3S2E24A001 | S. greenville          | Mocho I  | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E26J002 | mines rd               | Mocho II | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E29F004 | usgs wetmore           | Amador   | U  | 12        |     | V                                                           |                   | <b>V</b> |    |  |
| 3S2E30C001 | Vineyard 30C 1         | Amador   | L  | 12        |     |                                                             |                   |          |    |  |
| 3S2E30D002 | vineyard               | Amador   | U  | 12        |     |                                                             |                   | <b>V</b> |    |  |
| 3S2E32E007 | DVWTP 32E7             | Upland   | U  | 2         |     |                                                             |                   |          |    |  |
| 3S2E33G001 | Crohare                | Amador   | U  | 12        |     |                                                             |                   | <b>V</b> |    |  |
| 3S2E33K001 | VA                     | Amador   | U  | 4         |     |                                                             |                   |          |    |  |
| 3S2E33L001 | VA/CROHARE FENCE       | Amador   | U  | 4         |     |                                                             |                   |          |    |  |
| 3S3E06Q003 | PPWTP South Monitoring | Altamont | U  | 2         |     |                                                             |                   |          |    |  |
| 3S3E07D002 | 7D 2                   | Spring   | U  | 2         |     |                                                             |                   |          | İ  |  |
| TOTALS:    | ,                      | <u> </u> | ı  | 221       | 8   | 12                                                          | 2                 | 6        | 14 |  |



## TABLE 6-2 GROUNDWATER PROGRAM WELL CONSTRUCTION DETAILS 2020 WATER YEAR

| Site                                                                                                                       | Мар                                                         | Type                                                                                            | Other Name                                                                                                   | Completed                                                                                                             | Basin                                                 | Aquifer                               | RP                                                                                    | TD                                                     | Dia                                           | Perf                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 2S1E32E001                                                                                                                 | 32E1                                                        | monitor                                                                                         | End of Arnold Rd                                                                                             | 12/28/2000                                                                                                            | None                                                  | U                                     | 392.56                                                                                | 70                                                     | 2                                             | 55 - 70                                                                                                           |
| 2S1E32N001                                                                                                                 | 32N1                                                        | monitor                                                                                         | Camp Parks                                                                                                   | 7/1/1976                                                                                                              | Camp                                                  | U                                     | 360.79                                                                                | 44                                                     | 2.5                                           | 35 - 41                                                                                                           |
| 2S1E32Q001                                                                                                                 | 32Q1                                                        | monitor                                                                                         | Summer Glen Dr                                                                                               | 12/29/2000                                                                                                            | Camp                                                  | U                                     | 367.55                                                                                | 45                                                     | 2                                             | 30 - 45                                                                                                           |
| 2S1E33L001                                                                                                                 | 33L1                                                        | monitor                                                                                         | Gleason Dr @ Tassajara                                                                                       | 12/27/2000                                                                                                            | None                                                  | U                                     | 389.46                                                                                | 80                                                     | 2                                             | 65 - 80                                                                                                           |
| 2S1E33P002                                                                                                                 | 33P2                                                        | monitor                                                                                         | Central Pkwy at Emerald Glen P                                                                               | 12/20/2000                                                                                                            | Camp                                                  | U                                     | 370.05                                                                                | 55                                                     | 2                                             | 45 - 55                                                                                                           |
| 2S1E33R001                                                                                                                 | 33R1                                                        | monitor                                                                                         | Central Pkwy @ Grafton                                                                                       | 10/23/2001                                                                                                            | None                                                  | U                                     | 358.5                                                                                 | 60                                                     | 2                                             | 40 - 60                                                                                                           |
| 2S1W15F001                                                                                                                 | 15F1                                                        | monitor                                                                                         | BOLLINGER                                                                                                    | 9/28/1976                                                                                                             | Bishop                                                | U                                     | 439.44                                                                                | 60                                                     | 2.5                                           | 50.3 - 55.3                                                                                                       |
| 2S1W26C002                                                                                                                 | 26C2                                                        | monitor                                                                                         | PINE VALLEY                                                                                                  | 9/28/1976                                                                                                             | Dublin                                                | U                                     | 406.53                                                                                | 50                                                     | 2.5                                           | 40 - 45                                                                                                           |
| 2S1W36E003                                                                                                                 | 36E3                                                        | monitor                                                                                         | Kolb Park                                                                                                    | 9/13/1977                                                                                                             | Dublin                                                | U                                     | 346.51                                                                                | 60                                                     | 2.5                                           | 50 - 55                                                                                                           |
| 2S1W36F001                                                                                                                 | 36F1                                                        | nested                                                                                          | Dublin High shallow                                                                                          | 5/8/1996                                                                                                              | Dublin                                                | L                                     | 342.71                                                                                | 190                                                    | 2                                             | 140 _ 180                                                                                                         |
| 2S1W36F002                                                                                                                 | 36F2                                                        | nested                                                                                          | Dublin High mid                                                                                              | 5/8/1996                                                                                                              | Dublin                                                | L                                     | 342.71                                                                                | 320                                                    | 2                                             | 270 _ 310                                                                                                         |
| 2S2E27P002                                                                                                                 | 27P2                                                        | monitor                                                                                         | hartford ave east                                                                                            | 6/18/1979                                                                                                             | Spring                                                | U                                     | 505.43                                                                                | 68                                                     | 4                                             | 35 _ 63                                                                                                           |
| 2S2E28D002                                                                                                                 | 28D2                                                        | monitor                                                                                         | May School                                                                                                   | 11/2/1976                                                                                                             | May                                                   | U                                     | 555.15                                                                                | 55                                                     | 2.5                                           | 45 _ 50                                                                                                           |
| 2S2E28J002                                                                                                                 | 28J2                                                        | industrial                                                                                      | FCC Well                                                                                                     | 7/26/1984                                                                                                             | May                                                   | L                                     | 522.292                                                                               | 230                                                    | 6                                             | 50 - 230                                                                                                          |
| 2S2E28Q001                                                                                                                 | 28Q1                                                        | monitor                                                                                         | hartford ave                                                                                                 | 11/2/1976                                                                                                             | May                                                   | U                                     | 513.04                                                                                | 28                                                     | 2.5                                           | 17.6 - 22.6                                                                                                       |
| 2S2E32K002                                                                                                                 | 32K2                                                        | monitor                                                                                         | jenson's N liv. Ave                                                                                          | 12/20/1977                                                                                                            | Cayetano                                              | U                                     | 507.43                                                                                | 43                                                     | 2.5                                           | 33 - 38                                                                                                           |
| 2S2E34E001                                                                                                                 | 34E1                                                        | monitor                                                                                         | Mud City                                                                                                     | 12/21/1977                                                                                                            | May                                                   | U                                     | 499.73                                                                                | 49                                                     | 2.5                                           | 40 - 45                                                                                                           |
| 2S2E34Q002                                                                                                                 | 34Q2                                                        | monitor                                                                                         | Hollyhock & Crocus                                                                                           | 12/12/2001                                                                                                            | Spring                                                | U                                     | 507.24                                                                                | 50                                                     | 2                                             | 25 - 50                                                                                                           |
| 3S1E01F002                                                                                                                 | 1F2                                                         | monitor                                                                                         | Constitution Dr                                                                                              | 12/18/2000                                                                                                            | Camp                                                  | U                                     | 428.44                                                                                | 40                                                     | 2                                             | 25 - 40                                                                                                           |
| 3S1E01H003                                                                                                                 | 1H3                                                         | monitor                                                                                         | Collier Canyon g1                                                                                            | 12/20/1977                                                                                                            | Camp                                                  | U                                     | 422.8                                                                                 | 80                                                     | 2.5                                           | 70 - 75                                                                                                           |
| 3S1E01J004                                                                                                                 | 1J04                                                        | irrigation                                                                                      | Collier Vineyards                                                                                            | 2/6/2018                                                                                                              | Camp                                                  | L                                     |                                                                                       | 300                                                    | 12                                            | 260 - 280                                                                                                         |
| 3S1E01L001                                                                                                                 | 1L1                                                         | monitor                                                                                         | Kitty Hawk                                                                                                   | 12/19/2000                                                                                                            | Camp                                                  | U                                     | 403.04                                                                                | 70                                                     | 2                                             | 60 - 70                                                                                                           |
| 3S1E01P002                                                                                                                 | 1P2                                                         | monitor                                                                                         | Airport gas g5                                                                                               | 12/11/1975                                                                                                            | Amador                                                | U                                     | 389.64                                                                                | 50                                                     | 2.5                                           | 40 - 45                                                                                                           |
| 3S1E01P003                                                                                                                 | 1P3                                                         | supply                                                                                          | New airport well                                                                                             | 7/28/1988                                                                                                             | Amador                                                | L                                     | 394.44                                                                                | 480                                                    | 12                                            | 245 - 460                                                                                                         |
| 3S1E02J002                                                                                                                 | 2J2                                                         | monitor                                                                                         | Maint. Bldg                                                                                                  | 7/16/2003                                                                                                             | Camp                                                  | U                                     | 380.89                                                                                | 41                                                     | 2                                             | 31 - 41                                                                                                           |
| 3S1E02J003                                                                                                                 | 2J3                                                         | monitor                                                                                         | Doolan Rd East                                                                                               | 7/16/2003                                                                                                             | Camp                                                  | U                                     | 406.35                                                                                | 65                                                     | 2                                             | 55 - 65                                                                                                           |
| 3S1E02K002                                                                                                                 | 2K2                                                         | monitor                                                                                         | Doolan Rd West                                                                                               | 12/10/1975                                                                                                            | Camp                                                  | U                                     | 397.04                                                                                | 46                                                     | 2.5                                           | 36.5 - 41.5                                                                                                       |
| 3S1E02M003                                                                                                                 | 2M3                                                         | monitor                                                                                         | Friesman Rd North                                                                                            | 11/13/2000                                                                                                            | Camp                                                  | U                                     | 365.04                                                                                | 50                                                     | 2                                             | 35 - 50                                                                                                           |
| 3S1E02N006                                                                                                                 | 2N6                                                         | monitor                                                                                         | Friesman Rd South                                                                                            | 11/13/2000                                                                                                            | Amador                                                | U                                     | 366.14                                                                                | 55                                                     | 2                                             | 40 - 55                                                                                                           |
| 3S1E02P003                                                                                                                 | 2P3                                                         | domestic                                                                                        | Crosswinds Church                                                                                            | 9/26/1977                                                                                                             | Camp                                                  | L                                     | 371.73                                                                                | 380                                                    | 10                                            | 340 - 372                                                                                                         |
| 3S1E02Q001                                                                                                                 | 2Q1                                                         | monitor                                                                                         | LPGC #1                                                                                                      | 7/16/2003                                                                                                             | Amador                                                | U                                     | 369.92                                                                                | 45                                                     | 2                                             | 35 - 45                                                                                                           |
| 3S1E02R001                                                                                                                 | 2R1                                                         | monitor                                                                                         | Beebs                                                                                                        | 11/1/1975                                                                                                             | Amador                                                | U                                     | 376.29                                                                                | 33                                                     | 2.5                                           | 21 - 26                                                                                                           |
| 3S1E03G002                                                                                                                 | 3G2                                                         | monitor                                                                                         | fallon rd                                                                                                    | 1/18/1978                                                                                                             | Camp                                                  | U                                     | 354.24                                                                                | 50                                                     | 2.5                                           | 40 - 45                                                                                                           |
| 3S1E04A001                                                                                                                 | 4A1                                                         | monitor                                                                                         | SMP-DUB-2                                                                                                    | 10/23/2001                                                                                                            | Camp                                                  | U                                     | 350.67                                                                                | 49.5                                                   | 2                                             | 29.5 - 49.5                                                                                                       |
| 3S1E04J005                                                                                                                 | 4J5                                                         | monitor                                                                                         | Pimlico shallow                                                                                              | 10/25/2001                                                                                                            | Camp                                                  | U                                     | 345.2                                                                                 | 47                                                     | 2                                             | 22 _ 47                                                                                                           |
| 3S1E04J006                                                                                                                 | 4J6                                                         | monitor                                                                                         | Pimlico deep                                                                                                 | 10/24/2001                                                                                                            | Camp                                                  | U                                     | 345.55                                                                                | 110                                                    | 2                                             | 68 - 110                                                                                                          |
| 3S1E04Q002                                                                                                                 | 4Q2                                                         | monitor                                                                                         | gulfstream                                                                                                   | 12/13/1977                                                                                                            | Amador                                                | U                                     | 345.42                                                                                | 90                                                     | 2.5                                           | 80 - 85                                                                                                           |
| 3S1E05K006                                                                                                                 |                                                             |                                                                                                 | ļ <del>-</del>                                                                                               | 6/7/1990                                                                                                              |                                                       | U                                     | 346.05                                                                                | 75                                                     | 4                                             |                                                                                                                   |
| 3S1E05K007                                                                                                                 |                                                             |                                                                                                 |                                                                                                              | 6/8/1990                                                                                                              | •                                                     | L                                     | 346.19                                                                                | 150                                                    | 4                                             |                                                                                                                   |
| 3S1E05L003                                                                                                                 | 5L3                                                         | monitor                                                                                         | Oracle                                                                                                       | 12/11/2001                                                                                                            | Camp                                                  | U                                     | 339.43                                                                                | 40                                                     | 2                                             | 15 - 40                                                                                                           |
|                                                                                                                            |                                                             |                                                                                                 | Owens Park                                                                                                   | 1                                                                                                                     | ·                                                     |                                       |                                                                                       |                                                        |                                               |                                                                                                                   |
|                                                                                                                            |                                                             |                                                                                                 | Dublin Ct                                                                                                    |                                                                                                                       | •                                                     |                                       |                                                                                       |                                                        |                                               |                                                                                                                   |
| 3S1E06N002                                                                                                                 | 6N2                                                         | monitor                                                                                         | DSRSD MW-3                                                                                                   | 3/20/1985                                                                                                             | Dublin                                                | U                                     | 335.2                                                                                 | 67                                                     | 4                                             | 47 - 67                                                                                                           |
|                                                                                                                            |                                                             | monitor                                                                                         | 1                                                                                                            | 1                                                                                                                     |                                                       |                                       |                                                                                       |                                                        |                                               |                                                                                                                   |
| 3S1E04A001<br>3S1E04J005<br>3S1E04J006<br>3S1E04Q002<br>3S1E05K006<br>3S1E05K007<br>3S1E05L003<br>3S1E05P006<br>3S1E06F003 | 4A1<br>4J5<br>4J6<br>4Q2<br>5K6<br>5K7<br>5L3<br>5P6<br>6F3 | monitor | SMP-DUB-2 Pimlico shallow Pimlico deep gulfstream Rosewood shallow Rosewood deep Oracle Owens Park Dublin Ct | 10/23/2001<br>10/25/2001<br>10/24/2001<br>12/13/1977<br>6/7/1990<br>6/8/1990<br>12/11/2001<br>12/19/2000<br>9/29/1976 | Camp Camp Camp Amador Camp Camp Camp Camp Camp Dublin | U U U U U U U U U U U U U U U U U U U | 350.67<br>345.2<br>345.55<br>345.42<br>346.05<br>346.19<br>339.43<br>336.65<br>329.82 | 49.5<br>47<br>110<br>90<br>75<br>150<br>40<br>35<br>36 | 2<br>2<br>2<br>2.5<br>4<br>4<br>2<br>2<br>2.5 | 29.5 - 49.5<br>22 - 47<br>68 - 110<br>80 - 85<br>40 - 70<br>134 - 144<br>15 - 40<br>25 - 35<br>27 - 32<br>47 - 67 |

RP = Reference Point Elevation (in feet above MSL)
Dia = Diameter of well casing (in inches)

| Site                     | Мар   | Type     | Other Name               | Completed              | Basin  | Aquifer | RP               | TD I  | Dia | Perf                   |
|--------------------------|-------|----------|--------------------------|------------------------|--------|---------|------------------|-------|-----|------------------------|
| 3S1E06N006               | 6N 6  | monitor  | DSRSD NE-76              | 11/9/2007              | Dublin | U       | 333.58           | 75    | 2   | 50 - 70                |
| 3S1E07B002               | 7B2   | monitor  | Hopyard rd               | 5/17/1979              | Dublin | L       | 327.77           | 152   | 4   | 143 - 149              |
| 3S1E07B012               | 7B12  | monitor  | Hacienda Arch            | 7/31/2002              | Dublin | U       | 327.82           | 70    | 2   | 50 - 70                |
| 3S1E07D001               | 7D 1  | monitor  | DSRSD SW-75              | 11/6/2007              | Dublin | U       | 330.09           | 75    | 2   | 54 - 74                |
| 3S1E07D003               | 7D 3  | monitor  | DSRSD SE-70              | 11/2/2007              | Dublin | U       | 332.28           | 70    | 2   | 45 - 65                |
| 3S1E07G007               | 7G7   | monitor  | Chabot Well              | 1/22/2002              | Dublin | U       | 327.33           | 55    | 2   | 35 - 55                |
| 3S1E07J005               | 7J5   | monitor  | Thomas Hart School       | 7/10/2002              | Dublin | U       | 326.78           | 50    | 2   | 30 - 50                |
| 3S1E08B001               | 8B1   | monitor  | Lizard Well              | 5/31/1979              | Amador | U       | 338.28           | 148   | 4   | 55 - 82                |
| 3S1E08G004               | 8G4   | monitor  | Apache                   | 12/19/2001             | Amador | U       | 341.47           | 85    | 2   | 60 - 85                |
| 3S1E08H009               | 8H9   | nested   | Mocho 4 Nested Shallow   | 12/12/1996             | Amador | L       | 338.53           | 240   | 2   | 210 - 230              |
| 3S1E08H010               | 8H10  | nested   | Mocho 4 Nested Middle    | 12/12/1996             | Amador | L       | 339.26           | 440   | 2   | 290 - 430              |
| 3S1E08H011               | 8H11  | nested   | Mocho 4 Nested deep      | 12/21/1996             | Amador | D       | 339.26           | 720   | 2   | 520 - 720              |
| 3S1E08H013               | 8H13  | monitor  | Mocho 3 mon              | 12/11/1998             | Amador | D       | 338.96           | 800   | 2   | 570 - 790              |
| 3S1E08H018               | M4    | muni     | Mocho 4                  | 11/1/2000              | Amador | L       | 341.94           | 745   | 20  | 515 - 730              |
| 3S1E08K001               | 8K1   | monitor  | Cockroach well           | 1/23/1978              | Amador | U       | 332.37           | 99    | 2.5 | 89 - 94                |
| 3S1E08N001               | 8N1   | monitor  | sports park              | 8/27/1976              | Bernal | U       | 323.68           | 72    | 2.5 | 62 - 67                |
| 3S1E09B001               | St1   | muni     | Stoneridge               | 1/28/1992              | Amador | L       | 349.23           | 810   | 20  | 250 - 800              |
| 3S1E09J007               | 9J7   | nested   | SW Lake I Shallow        | 11/23/2004             | Amador | U       | 357.36           | 2     | 2   | 120 - 140              |
| 3S1E09J008               | 9J8   | nested   | SW Lake I Middle         | 11/23/2004             | Amador | L       | 357.55           | 305   | 2   | 280 - 300              |
| 3S1E09J009               | 9J9   | nested   | SW Lake I Deep           | 11/23/2004             | Amador | L       | 357.68           | 505   | 2   | 480 - 500              |
| 3S1E09M002               | M1    | muni     | Mocho 1                  | 4/6/1964               | Amador | L       | 343.95           | 530   | 16  | 150 - 510              |
| 3S1E09M002               | M2    | muni     | Mocho 2                  | 5/4/1967               | Amador | L       | 347.47           | 575   | 18  | 250 - 570              |
| 3S1E09M003               | M3    | muni     | Mocho 3                  | 11/1/2000              | Amador | L       | 342.89           | 498   | 20  | 315 - 493              |
| 3S1E09N004               | 9P5   | monitor  | Key_AmW_U (Mohr Key)     | 12/6/1977              | Amador | U       | 349.4            | 105   | 2.5 | 95 - 100               |
| 3S1E09P009               | 9P9   | nested   | Mohr Ave Shallow         | 3/23/2005              | Amador | L       | 349.59           | 210   | 2.3 | 185 - 205              |
| 3S1E09P009               | 9P10  |          |                          | -                      | Amador | L       | 349.51           | 310   | 2   | 285 - 305              |
| 3S1E09P010               | 9P10  | nested   | Key_AmW_L  Mohr Ave Deep | 3/23/2005<br>3/23/2005 | Amador | L       | 349.44           | 425   | 2   | 405 - 420              |
|                          | 10A2  |          | El C harro Rd            |                        |        | U       | 367.35           | 88    | 4   | 70 - 80                |
| 3S1E10A002               | 10A2  | monitor  | Kaiser Rd Shallow        | 5/10/1979              | Amador | L       |                  | 200   | 2   |                        |
| 3S1E10B008<br>3S1E10B009 | 10B6  | nested   | Kaiser Rd Middle 1       | 6/18/1997<br>6/18/1997 | Amador | L       | 353.6<br>353.49  | 294   | 2   | 100 - 190<br>244 - 284 |
|                          |       | nested   |                          | +                      | Amador |         |                  |       | 2   |                        |
| 3S1E10B010               | 10B10 | nested   | Kaiser Rd Middle 2       | 6/18/1997              | Amador | L       | 353.52<br>353.52 | 600   | 2   | 400 - 590              |
| 3S1E10B011               | 10B11 | nested   | Kaiser Rd Deep           | 6/18/1997              | Amador | D       |                  | 810   | 2   | 660 - 800              |
| 3S1E10B014               | 10B14 | monitor  | COL 5 Monitoring         | 2/26/2014              | Amador | L       | 355.591          | 690   |     | 390 - 690              |
| 3S1E10B016               | COL5  | muni     | COL 5                    | 7/19/2014              | Amador | L       | 357.584          |       | 18  | 390 - 690              |
| 3S1E10D002               | 10D2  | nested   | Stoneridge Shallow       | 9/10/1998              | Amador | L       | 349.32           | 212   | 2   | 182 - 212              |
| 3S1E10D003               | 10D3  | nested   | Stoneridge Middle 1      | 9/10/1998              | Amador | L       | 349.28           | 322   | 2   | 262 - 312              |
| 3S1E10D004               | 10D4  | nested   | Stoneridge Middle 2      | 9/10/1998              | Amador | L       | 349.3            | 616   | 2   | 366 - 606              |
| 3S1E10D005               | 10D5  | nested   | Stoneridge Deep          | 9/10/1998              | Amador | D       | 349.32           | 790   | 2   | 710 - 780              |
| 3S1E10K002               | 10K2  | monitor  | COL 1 Monitoring         | 1/17/2007              | Amador | L       | 358.68           | 590.6 | 4   | 195.5 - 585.0          |
| 3S1E10K003               | COL1  | muni<br> | COL 1                    | 2/27/2008              | Amador | L       | 363.79           | 530   | 18  | 205 - 530              |
| 3S1E11B001               | 11B1  | monitor  | Airport West             | 12/11/1975             | Amador | U       | 369.35           | 43    | 2.5 | 33 - 38                |
| 3S1E11C003               | 11C3  | monitor  | LAVWMA ROW               | 12/22/2003             | Amador | U       | 364.82           | 55    | 2   | 35 - 55                |
| 3S1E11G001               | 11G1  | nested   | Key_AmE_U                | 4/8/1997               | Amador | U       | 371.62           | 120   | 2   | 100 - 110              |
| 3S1E11G002               | 11G2  | nested   | Rancho Charro Middle 1   | 4/8/1997               | Amador | L       | 371.61           | 350   | 2   | 230 - 340              |
| 3S1E11G003               | 11G3  | nested   | Rancho Charro Middle 2   | 4/8/1997               | Amador | L       | 371.64           | 590   | 2   | 380 - 580              |
| 3S1E11G004               | 11G4  | nested   | Rancho Charro Deep       | 4/8/1997               | Amador | D       | 371.68           | 790   | 2   | 620 - 780              |
| 3S1E11M002               | 11M2  | monitor  | COL 2 Monitoring         | 9/25/2007              | Amador | L       | 365.96           | 700   | 4.5 | 199 - 699              |
| 3S1E11M003               | COL2  | muni     | COL 2                    | 2/14/2008              | Amador | L       | 369.24           | 684   | 18  | 345 - 684              |
| 3S1E11P006               | 11P6  | domestic | New Jamieson Residence   | 3/10/2000              | Amador | L       | 376.67           | 400   | 5   | 240 - 380              |
| 3S1E12A002               | 12A2  | monitor  | Airport South            | 12/11/1975             | Amador | U       | 401.35           | 69    | 2.5 | 63.7 - 68.7            |
| 3S1E12D002               | 12D2  | monitor  | LWRP G6                  |                        | Amador | U       | 384.45           | 44.6  |     | 36 - 41                |

RP = Reference Point Elevation (in feet above MSL) Dia = Diameter of well casing (in inches)

| Site                     | Map          | Type         | Other Name                 | Completed  | Basin  | Aquifer | RP     | TD   | Dia  | Perf                 |
|--------------------------|--------------|--------------|----------------------------|------------|--------|---------|--------|------|------|----------------------|
| 3S1E12G001               | 12G1         | monitor      | Oaks Park Shallow          | 12/12/1975 | Amador | U       | 404.47 | 73   | 2.5  | 63 - 68              |
| 3S1E12H004               | 12H4         | nested       | LWRP Shallow               | 1/8/1998   | Amador | L       | 407.75 | 270  | 2    | 185 - 260            |
| 3S1E12H005               | 12H5         | nested       | LWRP Middle 1              | 1/8/1998   | Amador | L       | 407.78 | 400  | 2    | 360 - 390            |
| 3S1E12H006               | 12H6         | nested       | LWRP Middle 2              | 1/8/1998   | Amador | L       | 407.75 | 480  | 2    | 410 - 468            |
| 3S1E12H007               | 12H7         | nested       | LWRP Deep                  | 1/8/1998   | Amador | D       | 407.67 | 684  | 2    | 609 - 674            |
| 3S1E12K002               | 12K2         | nested       | Oaks Park Mid              | 11/1/2005  | Amador | L       | 406.29 | 300  | 2    | 210 - 295            |
| 3S1E12K003               | 12K3         | nested       | Key_AmE_L                  | 11/1/2005  | Amador | L       | 406.83 | 475  | 2    | 355 - 470            |
| 3S1E12K004               | 12K4         | nested       | Oaks Park Deep             | 11/1/2005  | Amador | D       | 406.71 | 575  | 2    | 550 - 570            |
| 3S1E13P005               | 13P5         | nested       | LGA Grant Nested 1         | 11/2/2010  | Amador | U       | 399.97 | 135  | 2    | 110 - 130            |
| 3S1E13P006               | 13P6         | nested       | LGA Grant Nested 2         | 11/2/2010  | Amador | L       | 399.93 | 255  | 2    | 230 - 250            |
| 3S1E13P007               | 13P7         | nested       | LGA Grant Nested 3         | 11/2/2010  | Amador | L       | 399.97 | 375  | 2    | 350 - 370            |
| 3S1E13P008               | 13P8         | nested       | LGA Grant Nested 4         | 11/2/2010  | Amador | L       | 399.94 | 605  | 2    | 580 - 600            |
| 3S1E14B001               | 14B1         | industrial   | Industrial Asphalt         |            | Amador | L       | 384.2  | 435  | 8    | 200 - 410            |
| 3S1E14D002               | 14D2         | monitor      | South Cope Lake            | 8/30/2006  | Amador | L       | 371.83 | 740  | 14.5 | 170 - 740            |
| 3S1E15J003               | 15J3         | supply       | shadow cliff               | 12/2/1980  | Amador | L       | 344.59 | 196  | 8    | 154 - 184            |
| 3S1E15M003               | 15M3         | monitor      | Bush/Valley South          | 12/15/1998 | Amador | L       | 362.88 | 600  | 2    | 280 - 590            |
| 3S1E16A002               | P8           | muni         | Pleas 8                    | 3/27/1992  | Amador | L       | 358.2  | 500  | 20   | 200 - 495            |
| 3S1E16A004               | 16A4         | monitor      | Bush/Valley Mid            | 12/3/1998  | Amador | L       | 359.36 | 603  | 2    | 260 - 580            |
| 3S1E16B001               | 16B1         | monitor      | Bush/Valley North          | 12/18/1998 | Amador | D       | 355.81 | 805  | 2    | 605 - 800            |
| 3S1E16C002               | 16C2         | nested       | Santa Rita Valley Shallow  | 4/14/2005  | Amador | L       | 344.38 | 190  | 2    | 165 - 185            |
| 3S1E16C003               | 16C3         | nested       | Santa Rita Valley Middle   | 4/14/2005  | Amador | L       | 344.27 | 305  | 2    | 280 - 300            |
| 3S1E16C004               | 16C4         | nested       | Santa Rita Valley Deep     | 4/14/2005  | Amador | L       | 344.16 | 375  | 2    | 355 - 370            |
| 3S1E16E004               | 16E4         | monitor      | black ave - cultural       | 12/15/1977 | Amador | U       | 351.69 | 105  | 2.5  | 95 - 100             |
| 3S1E16L005               | P5           | muni         | Pleas 5                    | 4/4/1962   | Amador | L       | 358.05 | 685  | 18   | 149 - 650            |
| 3S1E16L007               | P6           | muni         | Pleas 6                    | 6/1/1966   | Amador | L       | 354.47 | 647  | 18   | 165 - 647            |
| 3S1E16P005               | 16P5         | monitor      | Vervais Monitor            | 10/8/1976  | Amador | U       | 354.51 | 75   | 2.5  | 64 - 69              |
| 3S1E17B004               | 17B4         | supply       | Casterson                  | 1/1/1950   | Amador | L       | 337.69 | 248  | 8    | 0 - 248              |
| 3S1E17D004               | 17D3         | nested       | Hopyard Nested Shallow     | 8/6/1996   | Bernal | L       | 325.13 | 108  | 4    | 92 - 98              |
| 3S1E17D003               | 17D3         | nested       | Hopyard Nested Middle 1    | 8/6/1996   | Bernal | L       | 325.14 | 236  | 4    | 206 - 226            |
| 3S1E17D004               | 17D4<br>17D5 | nested       | Hopyard Nested Middle 2    | 8/6/1996   | Bernal | L       | 325.14 | 308  | 4    | 266 - 286            |
| 3S1E17D003               | 17D3         | nested       | Hopyard Nested Middle 3    | 8/6/1996   | Bernal | L       | 325.13 | 408  | 4    | 378 - 398            |
| 3S1E17D000               | 17D0         | nested       | Hopyard Nested Deep        | 8/6/1996   | Bernal | D       | 325.12 | 684  | 4    | 654 - 674            |
| 3S1E17D007               | 17D1         | monitor      | Hopyard 9 Monitoring Well  | 12/16/1998 | Bernal | L       | 324.84 | 603  | 2    | 340 - 505            |
| 3S1E17D011               | H9           |              | 1                          | 11/5/1999  | Bernal | ı       | 327.9  | 315  | 18   | 235 - 310            |
| 3S1E17B012               | H6           | muni         | Hopyard 9 Hopyard 6        | 2/1/1987   | Bernal | L       | 326.74 | 500  | 18   | 158 - 490            |
| 3S1E18E004               | 18E4         | monitor      | Valley Trails II           | 5/31/1979  | Bernal | U       | 320.74 | 83   | 4    | 69 - 79              |
| 3S1E18J002               | 18J2         | monitor      | camino segura              | 10/20/1977 | Bernal | U       | 323.02 | 71   | 2.5  |                      |
| 3S1E19A010               | SF-B         |              | SFWD South (B)             | 10/20/1977 | Bernal | L       | 337.02 | 331  | 2.5  |                      |
| 3S1E19A010               | SF-A         | muni<br>muni | SFWD South (B)             | 10/9/2001  | Bernal | L       | 334.27 | 330  | 18   | 400 000              |
| 3S1E19C004               | 19C4         | monitor      | del valle & laguna         | 6/11/1979  | Bernal | U       | 322.23 | 78   | 4    | 196 - 320<br>68 - 73 |
| 3S1E19C004<br>3S1E19K001 | 19C4         | monitor      | 680/bernal                 | 12/8/1975  | Bernal | U       | 321.54 | 57.6 | 2.5  | 47.6 - 52.6          |
|                          |              |              |                            |            |        |         |        |      |      |                      |
| 3S1E20B002               | 20B2         | supply       | Fairgrounds Potable        | 12/27/1961 | Bernal | L       | 344.03 | 500  | 12   | 218 - 500            |
| 3S1E20C003               | 20C3         | supply       | Fairgrounds Potable Backup | 0/45/0000  | Bernal | L       | 338.6  | 110  | 14   | 74 - 107             |
| 3S1E20C007               | 20C7         | monitor      | Key_Bern_U                 | 6/15/2000  | Bernal | U       | 338.66 | 153  | 2    | 65 - 145             |
| 3S1E20C008               | 20C8         | nested       | Key_Bern_L                 | 10/20/2008 | Bernal | L       | 338.67 | 315  | 2    | 295 - 315            |
| 3S1E20C009               | 20C9         | nested       | Fair Nested Deep           | 10/20/2008 | Bernal | L       | 338.78 | 515  | 2    | 495 - 515            |
| 3S1E20J004               | 20J4         | monitor      | civic center               | 12/5/1975  | Bernal | U       | 331.62 | 72   | 2.5  | 62 - 67              |
| 3S1E20M011               | 20M11        | monitor      | S.F "M"LINE                | 10/12/1977 | Bernal | U       | 325.73 | 71   | 2.5  | 61 - 66              |
| 3S1E20Q002               | 20Q2         | monitor      | 20Q2                       | 2/17/1976  | Bernal | U       | 325.82 | 65   | 10   | 45 - 53              |
| 3S1E22D002               | 22D2         | monitor      | vineyard trailer           | 10/28/1976 | Amador | U       | 368.05 | 72   | 2.5  | 62 - 67              |
| 3S1E23J001               | 23J1         | domestic     | 1627 vineyard trailer      | 3/4/1958   | Amador | L       | 428.2  | 120  | 8    | 0 - 120              |

RP = Reference Point Elevation (in feet above MSL) Dia = Diameter of well casing (in inches)

| Site                     | Мар          | Type               | Other Name                    | Completed              | Basin               | Aquifer | RP               | TD         | Dia        | Perf                     |
|--------------------------|--------------|--------------------|-------------------------------|------------------------|---------------------|---------|------------------|------------|------------|--------------------------|
| 3S1E25C003               | 25C3         | monitor            | Katz Winery Mansion           | 11/28/1990             | Amador              | U       | 454.16           | 146        | 2          | 70 - 140                 |
| 3S1E29M004               | 29M4         | monitor            | f.c. channel                  | 12/4/1975              | Castle              | U       | 310.94           | 57         | 2.5        | 47 - 52                  |
| 3S1E29P002               | 29P2         | monitor            | castlewood dr                 | 12/9/1975              | Bernal              | U       | 302.82           | 42         | 2.5        | 32 - 37                  |
| 3S1W01B009               | 1B9          | nested             | DSRSD Shallow                 | 2/15/1996              | Dublin              | L       | 333.56           | 162        | 2          | 122 - 152                |
| 3S1W01B010               | 1B10         | nested             | DSRSD Middle                  | 2/15/1996              | Dublin              | L       | 333.57           | 414        | 2          | 274 - 404                |
| 3S1W01B011               | 1B11         | nested             | DSRSD Deep                    | 2/15/1996              | Dublin              | L       | 333.74           | 560        | 2          | 480 - 550                |
| 3S1W01J001               | 1J1          | monitor            | DSRSD MW-1                    | 12/4/1984              | Dublin              | U       | 334.36           | 70         |            | 47 - 64                  |
| 3S1W02A002               | 2A2          | monitor            | McNamara's                    | 10/7/1976              | Dublin              | U       | 369.4            | 47         | 2.5        | 37 - 42                  |
| 3S1W12A009               | 12A 9        | monitor            | DSRSD NW-75                   | 11/7/2007              | Dublin              | U       | 332.14           | 74         | 2          | 49 - 69                  |
| 3S1W12B002               | 12B2         | monitor            | Stoneridge Mall Rd            | 6/21/1996              | Dublin              | U       | 342.89           | 39.5       | 4          | 20 - 50                  |
| 3S1W12J001               | 12J1         | monitor            | DSRSD South                   | 12/9/1975              | Dublin              | U       | 329.31           | 62         | 2.5        | 52 - 57                  |
| 3S1W13J001               | 13J1         | monitor            | muirwood dr                   | 10/7/1976              | Castle              | U       | 343.94           | 48         | 2.5        | 39 - 44                  |
| 3S2E01F002               | 1F2          | monitor            | Brisa at Circuit City         | 12/22/1977             | Spring              | U       | 572.99           | 68.6       | 2.5        | 59 - 64                  |
| 3S2E02B002               | 2B2          | monitor            | south front rd                | 6/7/1976               | Spring              | U       | 539.45           | 46         | 2.5        | 36.9 - 41.9              |
| 3S2E03A001               | 3A1          | monitor            | Bluebell                      | 12/21/1977             | Spring              | U       | 517.63           | 54         | 2.5        | 44 - 49                  |
| 3S2E03K003               | 3K3          | monitor            | first & S. front rd           | 12/12/1977             | Mocho I             | U       | 522.83           | 60         | 2.5        | 50 - 55                  |
| 3S2E05N001               | 5N1          | supply             | Spider Well                   | 10/5/1977              | Mocho II            | M       | 444              | 210        | 10         | 0 - 210                  |
| 3S2E07C002               | 7C2          | monitor            | jaws - york way - G4          | 4/6/1978               | Mocho II            | U       | 420.84           | 49         | 2.5        | 39 - 44                  |
| 3S2E07H002               | 7H2          | monitor            | dakota                        | 7/29/1989              | Mocho II            | U       | 442.85           | 54         | 2          | 44 - 54                  |
| 3S2E07N002               | 7N2          | monitor            | Isabel & Arroyo Mocho         | 12/20/2012             | Amador              | U       | 422              | 162        | 2          | 132 - 152                |
| 3S2E07P003               | CWS24        | muni               | CWS 24                        | 4/4/1972               | Amador              | L       | 431.46           | 510        | 16         | 300 - 490                |
| 3S2E07R003               | CWS31        | muni               | CWS 31                        | 9/20/2002              | Upland              | L       | 446              | 583        | 16         | 410 - 528                |
| 3S2E08F001               | CWS10        | muni               | CWS 10                        | 5/15/1954              | Mocho II            | L       | 456.24           | 470        | 16         | 143 - 433                |
| 3S2E08G001               | CWS19        | muni               | CWS 19                        | 4/15/1960              | Mocho II            | L       | 465.05           | 465        | 16         | 120 - 455                |
| 3S2E08H002               | 8H2          | monitor            | North k                       | 6/14/1976              | Mocho II            | U       | 469.61           | 46         | 2.5        | 36 - 41                  |
| 3S2E08H003               | 8H3          | nested             | Key_Mo2_L                     | 7/10/2009              | Mocho II            | L       | 477.25           | 195        | 2.0        | 170 - 190                |
| 3S2E08H004               | 8H4          | nested             | N Liv Ave Deep                | 7/10/2009              | Mocho II            | L       | 476.97           | 385        | 2          | 360 - 380                |
| 3S2E08K002               | 8K2          | monitor            | Key_Mo2_U (Livermore Key)     | 12/13/1977             | Mocho II            | U       | 464.78           | 74         | 2.5        | 64 - 69                  |
| 3S2E08N002               | CWS14        | muni               | CWS 14                        | 1/16/1958              | Mocho II            | L       | 453.64           | 526        | 10         | 140 - 515                |
| 3S2E08Q009               | 8Q 9         | monitor            | D-2                           | 6/15/1999              | Mocho II            | L       | 464.7            | 114        | 2          |                          |
| 3S2E09Q009               | CWS9         | muni               | CWS 9                         | 2/18/1952              | Mocho II            | L       | 518.15           | 572        | 14         | 400 400                  |
| 3S2E09Q001               | 9Q4          | monitor            | school st                     | 11/1/1977              | Mocho II            | U       | 505.425          | 80         | 2.5        | 180 - 492<br>70 - 75     |
| 3S2E09Q004<br>3S2E10F003 | 10F3         | monitor            | hexcel                        | 12/12/1977             | Mocho I             | U       | 534.84           | 45         | 2.5        | 35 - 40                  |
| 3S2E10F003               |              |                    |                               | 11/1/1976              |                     | U       | 555.36           | 43.5       | 2.5        | 33.5 - 39                |
| 3S2E10Q001<br>3S2E10Q002 | 10Q1<br>10Q2 | monitor            | almond LLNL W-703             |                        | Mocho II            | L       | 549.569          |            |            |                          |
| 3S2E10Q002<br>3S2E11C001 | 11C1         | monitor            | joan way                      | 12/3/1990<br>11/1/1976 | Mocho II<br>Mocho I | U       | 556.347          | 66.2       | 4.5<br>2.5 | 298 - 325<br>56.2 - 61.2 |
| 3S2E11C001               | 12C4         | monitor            | LLNL W-486                    | 3/11/1988              | Spring              | U       | 591.46           | 108        | 4.5        | 100 - 108                |
| 3S2E12C004<br>3S2E12J003 | 12U4<br>12J3 |                    | LLNL W-017A                   | 5/20/1981              |                     | L       | 631.05           | 160        | 5          | 127 - 157                |
| 3S2E12J003<br>3S2E14A003 | 14A3         | monitor<br>monitor | S. vasco @east ave            | 12/13/1977             | Spring<br>Mocho I   | U       | 602.24           | 110        | 2.5        |                          |
|                          |              |                    | I                             | 5/26/1983              |                     |         |                  |            | 9          |                          |
| 3S2E14B001<br>3S2E15E002 | 14B1<br>15E2 | domestic           | 5763 east ave Retzlaff Winery | 11/14/1983             | Mocho II            | L<br>L  | 593.36<br>549.69 | 300<br>192 | 8          | 146 - 234<br>104 - 189   |
|                          |              | irrigation         | •                             | 10/10/2013             |                     | U       |                  |            |            |                          |
| 3S2E15L001               | 15L1         | monitor            | Concannon 1                   |                        | Mocho II            |         | 561.5            | 40.5       | 2          | 20 - 40.5                |
| 3S2E15M002               | 15M2         | monitor            | Concannon 1                   | 10/10/2013             | Mocho II            | U       | 549.46           | 45         | 2          | 25 - 45                  |
| 3S2E15R017               | 15R17        | nested             | Buena Vista Shallow           | 12/14/2006             | Mocho II            | U       | 592.41           | 63         | 2          | 38 - 58                  |
| 3S2E15R018               | 15R18        | monitor            | Buena Vista Deep              | 12/15/2007             | Mocho II            | L       | 592.47           | 138        | 2          | 113 - 133                |
| 3S2E16A003               | 16A3         | irrigation         | Memory Gardens                | 5/1/1972               | Mocho II            | L       | 527.06           | 240        | 10         | 91 - 240                 |
| 3S2E16C001               | CWS15        | muni<br>           | CWS 15                        | 2/18/1958              | Mocho II            | L       | 510.97           | 584        | 16         | 150 - 523                |
| 3S2E16E004               | 16E4         | monitor            | pepper tree                   | 12/15/1977             | Mocho II            | U       | 506.26           | 45         | 2.5        | 35 - 40                  |
| 3S2E17E002               | 17E2         | supply             | Mocho Street                  | 3/30/1962              | Mocho II            | U       | 467.71           | 94         | 6          | 0 - 94                   |
| 3S2E18B001               | CWS20        | muni               | CWS 20                        | 1/30/1961              | Amador              | L       | 438.56           | 497        | 16         | 190 - 465                |
| 3S2E18E001               | 18E1         | monitor            | E. stanley                    | 4/22/1977              | Amador              | U       | 423.86           | 133.8      | 2.5        | 123.8 - 128.8            |

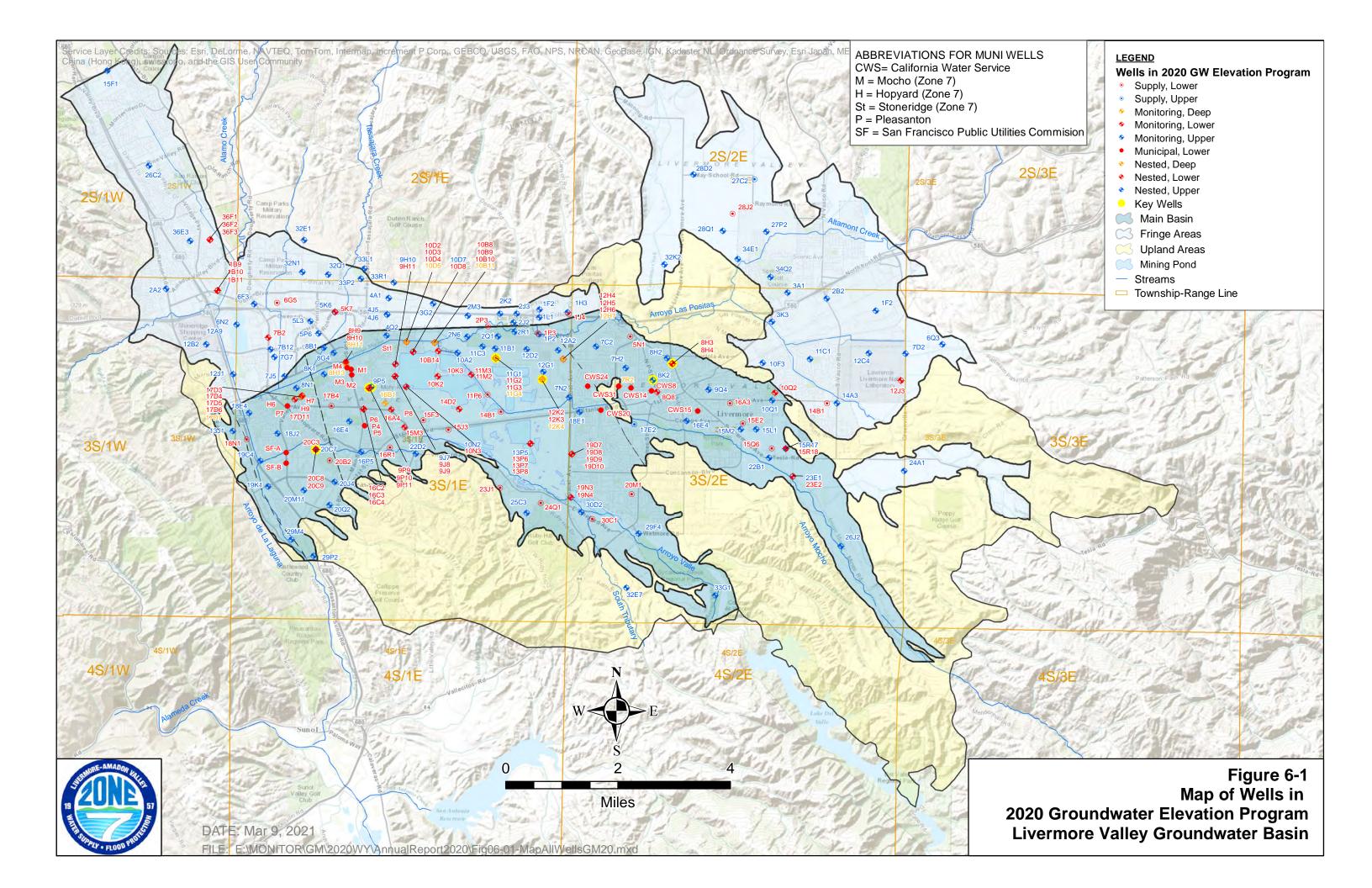
RP = Reference Point Elevation (in feet above MSL) Dia = Diameter of well casing (in inches)

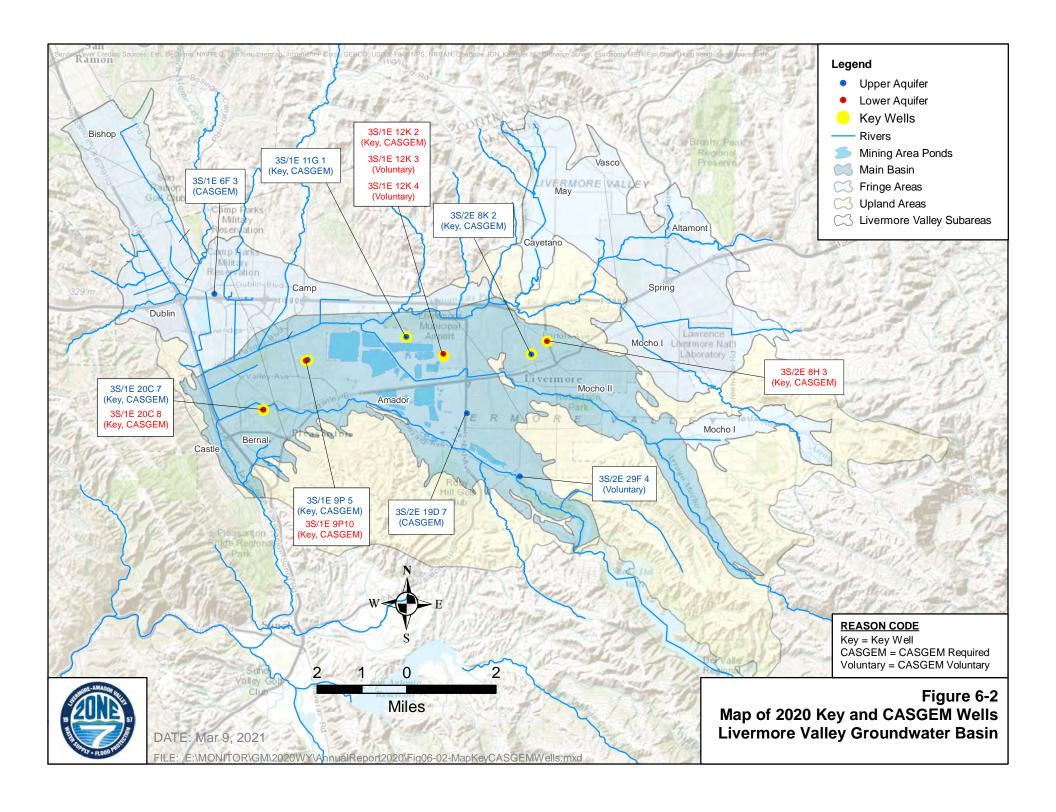
| Site       | Map   | Type    | Other Name             | Completed  | Basin    | Aquifer | RP     | TD   | Dia | Perf        |
|------------|-------|---------|------------------------|------------|----------|---------|--------|------|-----|-------------|
| 3S2E19D007 | 19D7  | nested  | Isabel Shallow         | 1/29/1999  | Amador   | U       | 415.07 | 180  | 2   | 100 - 180   |
| 3S2E19D008 | 19D8  | nested  | Isabel Middle 1        | 1/29/1999  | Amador   | L       | 415.04 | 260  | 2   | 210 - 260   |
| 3S2E19D009 | 19D9  | nested  | Isabel Middle 2        | 1/29/1999  | Amador   | L       | 414.98 | 390  | 2   | 280 - 390   |
| 3S2E19D010 | 19D10 | nested  | Isabel Deep            | 1/29/1999  | Amador   | L       | 414.89 | 470  | 2   | 420 - 470   |
| 3S2E19N003 | 19N3  | nested  | Shallow Cemex Nested   | 7/27/2018  | Amador   | U       | 418.45 | 120  | 2   | 105 - 115   |
| 3S2E19N004 | 19N4  | nested  | Deep Cemex Nested      | 7/27/2018  | Amador   | L       | 417.96 | 203  | 2   | 188 - 198   |
| 3S2E20M001 | 20M1  | supply  | Alden Lane             | 9/15/1928  | Amador   | L       | 478.79 | 184  | 12  | 0 - 184     |
| 3S2E22B001 | 22B1  | monitor | grapes                 | 7/8/1976   | Mocho II | U       | 585.88 | 31.9 | 2.5 | 21.9 _ 26.9 |
| 3S2E23E001 | 23E1  | nested  | Mines Nested Shallow   | 9/2/2004   | Mocho II | U       | 613.36 | 40   | 2   | 20 - 35     |
| 3S2E23E002 | 23E2  | nested  | Mines Nested Deep      | 9/2/2004   | Mocho II | L       | 613.23 | 110  | 2   | 95 - 105    |
| 3S2E24A001 | 24A1  | monitor | S. greenville          | 11/1/1976  | Mocho I  | U       | 717.7  | 46.3 | 2.5 | 36.3 - 41.3 |
| 3S2E26J002 | 26J2  | monitor | mines rd               | 12/27/1977 | Mocho II | U       | 689.92 | 44   | 2.5 | 34 - 39     |
| 3S2E29F004 | 29F4  | monitor | usgs wetmore           | 10/28/1976 | Amador   | U       | 457.5  | 36   | 2.5 | 26 - 31     |
| 3S2E30C001 | 30C1  | supply  | Vineyard 30C 1         | 3/16/1995  | Amador   | L       | 439.41 | 150  | 6   | 125 - 145   |
| 3S2E30D002 | 30D2  | monitor | vineyard               | 6/18/1979  | Amador   | U       | 431.6  | 44   | 4   | 24 - 39     |
| 3S2E32E007 | 32E7  | monitor | DVWTP 32E7             | 7/16/1991  | Upland   | U       | 610.94 | 37   | 6   | 19 - 34     |
| 3S2E33G001 | 33G1  | monitor | Crohare                | 12/12/1975 | Amador   | U       | 511.52 | 17   | 2.5 | 9 - 14      |
| 3S2E33K001 | 33K1  | monitor | VA                     |            | Amador   | U       | 546.83 | 15   | 2.5 | 7 - 12      |
| 3S2E33L001 | 33L1  | monitor | VA/CROHARE FENCE       |            | Amador   | U       | 557.63 | 16   | 2.5 | 11 - 16     |
| 3S3E06Q003 | 6Q3   | monitor | PPWTP South Monitoring | 8/29/2016  | Altamont | U       | 681.07 | 30   | 2   | 20 - 30     |
| 3S3E07D002 | 7D2   | monitor | 7D 2                   | 11/1/1976  | Spring   | U       | 621.94 | 72   | 2.5 | 64 - 69     |



|                          |             |         |                  | Fall 2            | 2019           | Spring :     | 2020           | Fall 20                | 020            | Cha                            | ange in Elevation                | ı (ft)                          |
|--------------------------|-------------|---------|------------------|-------------------|----------------|--------------|----------------|------------------------|----------------|--------------------------------|----------------------------------|---------------------------------|
| Well<br>Number           | Well        | Aguifer | Subarea          | Depth to<br>Water | GW Elev        | Depth to     | GW<br>Elev     | Depth to<br>Water (ft) | GW<br>Elev     | Sea<br>Fall 19 to<br>Spring 20 | sonal<br>Spring 20 to<br>Fall 20 | Annual<br>Fall 19 to<br>Fall 20 |
| 1S4E31P005               | Depth<br>24 | U       | Tracy            | 17.6              | 42.4           | 18.4         | 41.6           | 18.5                   | 41.5           | -0.8                           | -0.1                             | -0.9                            |
| 2S1E32E001               | 70          | U       | None             | 34.5              | 358.0          | 36.0         | 356.6          | 37.7                   | 354.9          | -1.5                           | -1.7                             | -3.2                            |
| 2S1E32N001               | 44          | Ü       | Camp             | 17.7              | 343.1          | 18.2         | 342.6          | 19.2                   | 341.6          | -0.5                           | -1.1                             | -1.6                            |
| 2S1E32Q001               | 45          | U       | Camp             | 26.1              | 341.5          | 26.8         | 340.7          | 28.0                   | 339.6          | -0.8                           | -1.1                             | -1.9                            |
| 2S1E33L001               | 80          | U       | None             | 48.1              | 341.3          | 51.1         | 338.4          | 52.0                   | 337.5          | -3.0                           | -0.9                             | -3.9                            |
| 2S1E33P002               | 55          | U       | Camp             | 30.4              | 339.7          | 32.0         | 338.1          | 32.9                   | 337.2          | -1.6                           | -0.9                             | -2.5                            |
| 2S1E33R001               | 60          | U       | None             | 17.9              | 340.6          | 18.7         | 339.8          | 19.9                   | 338.6          | -0.8                           | -1.2                             | -2.1                            |
| 2S1W15F001<br>2S1W26C002 | 60<br>50    | U       | Bishop<br>Dublin | 9.8<br>23.9       | 429.6<br>382.6 | 10.0<br>24.8 | 429.5<br>381.7 | 11.1<br>25.7           | 428.3<br>380.9 | -0.2<br>-0.9                   | -1.1<br>-0.8                     | -1.3<br>-1.8                    |
| 2S1W26C002<br>2S1W36E003 | 60          | Ü       | Dublin           | 4.1               | 342.4          | 3.5          | 343.0          | 4.7                    | 341.8          | 0.6                            | -1.2                             | -0.6                            |
| 2S1W36F001               | 190         | L       | Dublin           | 10.5              | 332.2          | 10.5         | 332.2          | 11.6                   | 331.1          | 0.0                            | -1.1                             | -1.1                            |
| 2S1W36F002               | 320         | L       | Dublin           | 7.8               | 335.0          | 6.5          | 336.2          | 9.2                    | 333.5          | 1.3                            | -2.7                             | -1.4                            |
| 2S1W36F003               | 520         | L       | Dublin           | 15.6              | 327.2          | 16.4         | 326.4          | 24.3                   | 318.4          | -0.8                           | -7.9                             | -8.7                            |
| 2S2E27C002               | 108         | U       | Spring           | 12.5              | 529.7          | 13.6         | 528.6          | 14.3                   | 527.9          | -1.1                           | -0.7                             | -1.8                            |
| 2S2E27P002               | 68          | U       | Spring           | 2.8               | 502.6          | 2.2          | 503.3          | 3.9                    | 501.6          | 0.7                            | -1.7                             | -1.1                            |
| 2S2E28D002<br>2S2E28J002 | 55<br>230   | U<br>L  | May<br>May       | 30.6<br>6.6       | 524.6<br>515.7 | 30.5<br>6.1  | 524.7<br>516.2 | 30.6<br>7.1            | 524.6<br>515.2 | 0.1<br>0.4                     | -0.1<br>-1.0                     | 0.0<br>-0.6                     |
| 2S2E28J002<br>2S2E28Q001 | 28          | U       | May              | 6.7               | 506.3          | 4.9          | 516.2          | 7.1                    | 515.2<br>506.1 | 1.9                            | -1.0<br>-2.1                     | -0.6                            |
| 2S2E32K002               | 43          | U       | Cayetano         | 8.7               | 498.8          | 8.5          | 499.0          | 8.8                    | 498.7          | 0.2                            | -0.3                             | -0.2                            |
| 2S2E34E001               | 49          | Ü       | May              | 5.7               | 494.1          | 4.1          | 495.6          | 5.8                    | 493.9          | 1.6                            | -1.7                             | -0.2                            |
| 2S2E34Q002               | 50          | U       | Spring           | 3.7               | 503.6          | 2.5          | 504.8          | 3.7                    | 503.6          | 1.2                            | -1.2                             | 0.0                             |
| 2S3E01D001               | 80          | U       | Tracy            | 9.4               | 80.7           | 10.2         | 79.8           | 11.6                   | 78.4           | -0.8                           | -1.4                             | -2.2                            |
| 3S1E01F002               | 40          | U       | Camp             | 18.8              | 409.6          | 19.4         | 409.0          | 20.5                   | 408.0          | -0.6                           | -1.1                             | -1.7                            |
| 3S1E01H003<br>3S1E01J004 | 80<br>300   | U       | Camp<br>Camp     | 25.6<br>NA        | 397.3<br>NA    | 25.3<br>NA   | 397.5<br>NA    | 27.6<br>NA             | 395.2<br>NA    | 0.3                            | -2.4                             | -2.1                            |
| 3S1E01J004<br>3S1E01L001 | 70          | U       | Camp             | 51.7              | 351.3          | 55.2         | 347.9          | 57.5                   | 345.5          | -3.5                           | -2.3                             | -5.8                            |
| 3S1E01P002               | 50          | Ü       | Amador           | 19.4              | 370.2          | 21.6         | 368.1          | 23.6                   | 366.0          | -2.2                           | -2.0                             | -4.2                            |
| 3S1E01P003               | 480         | Ĺ       | Amador           | 118.9             | 275.6          | 122.0        | 272.5          | 143.4                  | 251.1          | -3.1                           | -21.4                            | -24.5                           |
| 3S1E02J002               | 41          | U       | Camp             | 13.3              | 367.6          | 11.5         | 369.4          | 15.4                   | 365.5          | 1.8                            | -4.0                             | -2.2                            |
| 3S1E02J003               | 65          | U       | Camp             | 25.2              | 381.2          | 25.3         | 381.1          | 26.1                   | 380.3          | -0.1                           | -0.8                             | -0.9                            |
| 3S1E02K002               | 46          | U       | Camp             | 24.9              | 372.1          | 24.8         | 372.3          | 26.2                   | 370.8          | 0.2                            | -1.4                             | -1.3                            |
| 3S1E02M003<br>3S1E02N006 | 50<br>55    | U       | Camp<br>Amador   | 15.6<br>28.9      | 349.4<br>337.3 | 15.5<br>28.1 | 349.6<br>338.1 | 15.7<br>29.2           | 349.3<br>337.0 | 0.1<br>0.8                     | -0.3<br>-1.1                     | -0.1<br>-0.3                    |
| 3S1E02N006               | 380         | L       | Camp             | 97.0              | 274.8          | 99.5         | 272.2          | 126.4                  | 245.3          | -2.5                           | -26.9                            | -0.3                            |
| 3S1E02F003               | 45          | Ū       | Amador           | 19.2              | 350.7          | 18.6         | 351.4          | 21.2                   | 348.8          | 0.7                            | -2.6                             | -1.9                            |
| 3S1E02R001               | 33          | Ü       | Amador           | 17.0              | 359.3          | 15.9         | 360.4          | 20.1                   | 356.2          | 1.1                            | -4.2                             | -3.1                            |
| 3S1E03G002               | 50          | U       | Camp             | 8.4               | 345.8          | 11.6         | 342.6          | 10.8                   | 343.4          | -3.2                           | 0.8                              | -2.4                            |
| 3S1E04A001               | 50          | U       | Camp             | 15.1              | 335.6          | 16.0         | 334.7          | 17.1                   | 333.6          | -0.9                           | -1.1                             | -2.0                            |
| 3S1E04J005               | 47          | U       | Camp             | 13.4              | 331.8          | 14.1         | 331.2          | 15.7                   | 329.5          | -0.7                           | -1.7                             | -2.3                            |
| 3S1E04J006               | 110         | U       | Camp             | 13.9              | 331.7          | 15.8         | 329.7          | 17.8                   | 327.8          | -1.9                           | -1.9                             | -3.9                            |
| 3S1E04Q002<br>3S1E05K006 | 90<br>75    | U       | Amador<br>Camp   | 33.8<br>12.8      | 311.7<br>333.3 | 37.7<br>12.9 | 307.8<br>333.2 | 44.2<br>14.6           | 301.2<br>331.5 | -3.9<br>-0.1                   | -6.5<br>-1.7                     | -10.5<br>-1.8                   |
| 3S1E05K000               | 150         | L       | Camp             | 16.5              | 329.7          | 17.8         | 328.4          | 19.9                   | 326.3          | -1.3                           | -2.1                             | -3.4                            |
| 3S1E05L003               | 40          | Ū       | Camp             | 12.5              | 327.0          | 12.3         | 327.2          | 13.0                   | 326.5          | 0.2                            | -0.7                             | -0.5                            |
| 3S1E05P006               | 35          | U       | Camp             | 10.7              | 326.0          | 10.8         | 325.8          | 11.7                   | 324.9          | -0.1                           | -0.9                             | -1.0                            |
| 3S1E06F003               | 36          | U       | Dublin           | 5.1               | 324.7          | 4.4          | 325.4          | 5.2                    | 324.6          | 0.7                            | -0.8                             | -0.1                            |
| 3S1E06G005               | 200         | L       | Dublin           | 7.9               | 324.3          | 7.7          | 324.5          | 8.4                    | 323.8          | 0.2                            | -0.7                             | -0.5                            |
| 3S1E06N002               | 67          | U       | Dublin           | 13.0              | 322.2          | 12.6         | 316.1          | 13.4                   | 321.8          | -6.2                           | 5.7                              | -0.5                            |
| 3S1E07B002<br>3S1E07B012 | 152<br>70   | L       | Dublin<br>Dublin | 8.4<br>10.6       | 319.4<br>317.2 | 8.4<br>10.5  | 319.4<br>317.3 | 9.2<br>11.7            | 318.5<br>316.1 | 0.0                            | -0.9<br>-1.2                     | -0.9<br>-1.1                    |
| 3S1E07B012<br>3S1E07G007 | 55          | U       | Dublin           | 11.7              | 317.2          | 11.7         | 317.3          | 13.2                   | 314.1          | 0.1                            | -1.2<br>-1.5                     | -1.1                            |
| 3S1E07J005               | 50          | U       | Dublin           | 13.9              | 312.9          | 14.3         | 312.4          | 15.8                   | 311.0          | -0.4                           | -1.4                             | -1.9                            |
| 3S1E08B001               | 148         | Ü       | Amador           | 34.3              | 304.0          | 37.2         | 301.1          | 43.4                   | 294.9          | -2.8                           | -6.2                             | -9.0                            |
| 3S1E08G004               | 85          | U       | Amador           | 37.4              | 304.1          | 40.1         | 301.4          | 46.2                   | 295.3          | -2.6                           | -6.2                             | -8.8                            |
| 3S1E08H009               | 240         | L       | Amador           | 42.7              | 295.9          | 47.4         | 291.1          | 75.4                   | 263.1          | -4.8                           | -28.0                            | -32.8                           |
| 3S1E08H010               | 440         | L       | Amador           | 46.7              | 292.5          | 53.7         | 285.6          | 97.7                   | 241.5          | -7.0                           | -44.0                            | -51.0                           |
| 3S1E08H011<br>3S1E08H013 | 720<br>800  | D<br>D  | Amador<br>Amador | 53.5<br>52.8      | 285.8<br>286.1 | 62.4<br>54.2 | 276.9<br>284.8 | 89.8<br>89.0           | 249.5<br>250.0 | -8.9<br>-1.4                   | -27.4<br>-34.8                   | -36.3<br>-36.2                  |
| 3S1E08H013<br>3S1E08H018 | 745         | L       | Amador           | 57.9              | 284.1          | 68.8         | 273.2          | 94.0                   | 250.0          | -1.4<br>-10.9                  | -34.8<br>-25.2                   | -36.2                           |
| 3S1E08K001               | 99          | U       | Amador           | 33.6              | 298.8          | 35.3         | 297.1          | 44.6                   | 287.8          | -1.8                           | -9.3                             | -11.0                           |
| 3S1E08N001               | 72          | Ü       | Bernal           | 24.6              | 299.1          | 26.3         | 297.4          | 33.3                   | 290.4          | -1.6                           | -7.0                             | -8.6                            |
| 3S1E09H010               | 145         | U       | Amador           | 42.6              | 310.3          | 46.8         | 306.1          | 53.7                   | 299.2          | -4.1                           | -6.9                             | -11.0                           |
| 3S1E09H011               | 190         | L       | Amador           | 52.3              | 300.8          | 55.0         | 298.0          | 69.8                   | 283.3          | -2.8                           | -14.8                            | -17.5                           |
| 3S1E09J007               | 2           | U       | Amador           | 48.2              | 309.2          | 52.1         | 305.2          | 60.0                   | 297.4          | -3.9                           | -7.8                             | -11.8                           |
| 3S1E09J008               | 305         | L       | Amador           | 62.8              | 294.7          | 65.4         | 292.2          | 86.6                   | 270.9          | -2.6                           | -21.2                            | -23.8                           |
| 3S1E09J009<br>3S1E09M002 | 505<br>530  | L       | Amador<br>Amador | 72.2<br>48.0      | 285.5<br>296.0 | 76.5<br>50.7 | 281.2<br>293.3 | 110.5<br>75.0          | 247.2<br>269.0 | -4.3<br>-2.7                   | -34.0<br>-24.3                   | -38.3<br>-27.0                  |
| 3S1E09M002<br>3S1E09M003 | 575         | L       | Amador           | 51.8              | 295.7          | 57.7         | 289.8          | 106.4                  | 269.0          | -2. <i>1</i><br>-5.9           | -24.3<br>-48.7                   | -27.0<br>-54.6                  |
| 3S1E09M003               | 498         | L       | Amador           | 32.7              | 310.2          | 33.5         | 309.4          | NA                     | NA             | -0.8                           | -40.7                            | -54.0                           |
| 3S1E09P005               | 105         | U       | Amador           | 44.0              | 305.4          | 47.2         | 302.2          | 54.9                   | 294.5          | -3.2                           | -7.7                             | -10.9                           |
| 3S1E09P009               | 210         | L       | Amador           | 48.9              | 300.7          | 51.6         | 298.0          | 64.6                   | 285.0          | -2.7                           | -13.0                            | -15.7                           |



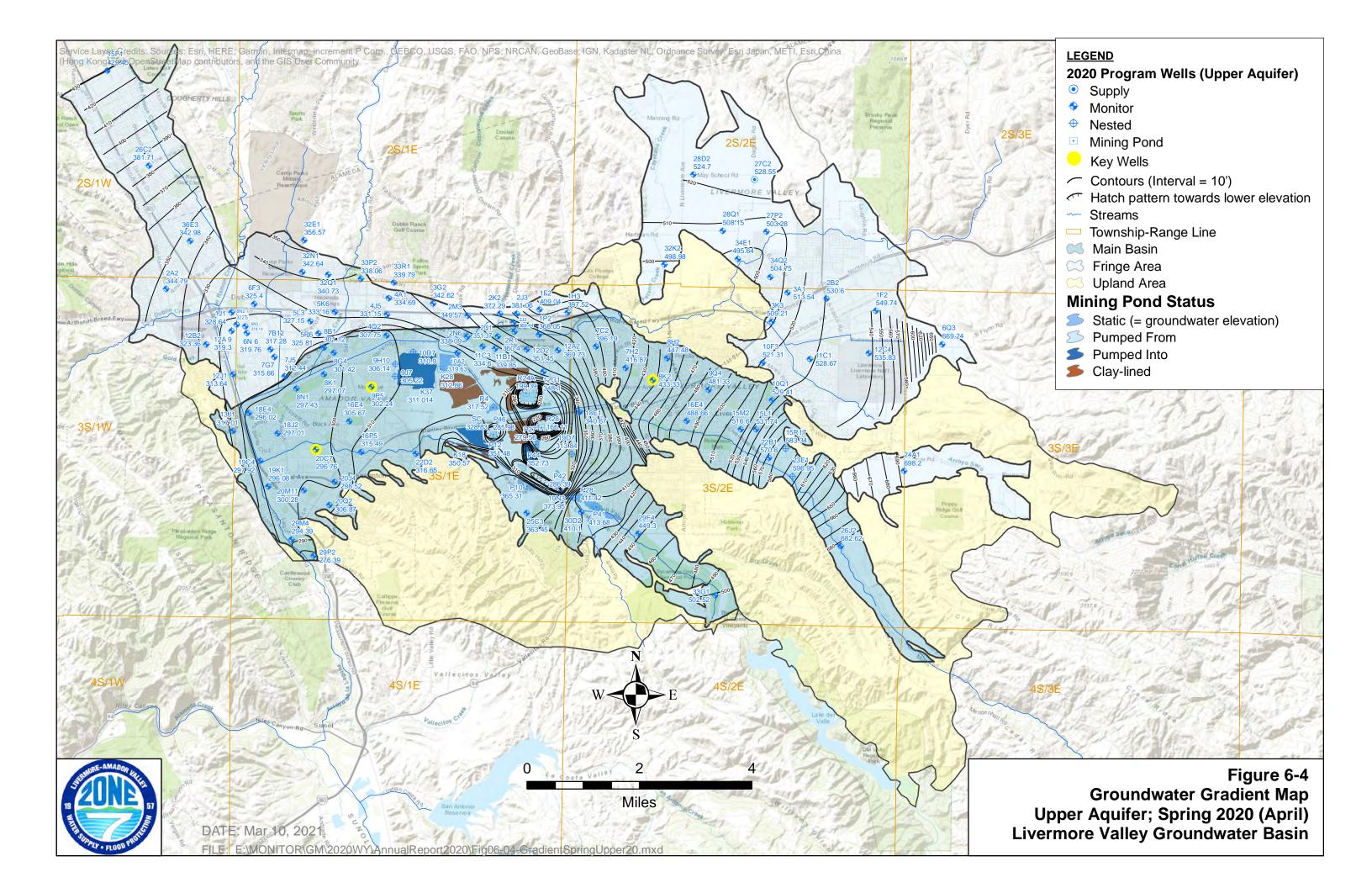

|                          |               |         |                  | Fall 2            | 2019           | Spring :               | 2020           | Fall 20                | 020            | Cha                            | ange in Elevation       | ı (ft)                          |
|--------------------------|---------------|---------|------------------|-------------------|----------------|------------------------|----------------|------------------------|----------------|--------------------------------|-------------------------|---------------------------------|
| Well<br>Number           | Well<br>Depth | Aquifer | Subarea          | Depth to<br>Water | GW Elev        | Depth to<br>Water (ft) | GW<br>Elev     | Depth to<br>Water (ft) | GW<br>Elev     | Sea<br>Fall 19 to<br>Spring 20 | Spring 20 to<br>Fall 20 | Annual<br>Fall 19 to<br>Fall 20 |
| 1S4E31P005               | 24            | U       | Tracy            | 17.6              | 42.4           | 18.4                   | 41.6           | 18.5                   | 41.5           | -0.8                           | -0.1                    | -0.9                            |
| 2S1E32E001               | 70            | Ü       | None             | 34.5              | 358.0          | 36.0                   | 356.6          | 37.7                   | 354.9          | -1.5                           | -1.7                    | -3.2                            |
| 2S1E32N001               | 44            | U       | Camp             | 17.7              | 343.1          | 18.2                   | 342.6          | 19.2                   | 341.6          | -0.5                           | -1.1                    | -1.6                            |
| 2S1E32Q001               | 45            | U       | Camp             | 26.1              | 341.5          | 26.8                   | 340.7          | 28.0                   | 339.6          | -0.8                           | -1.1                    | -1.9                            |
| 2S1E33L001               | 80            | U       | None             | 48.1              | 341.3          | 51.1                   | 338.4          | 52.0                   | 337.5          | -3.0                           | -0.9                    | -3.9                            |
| 2S1E33P002               | 55            | U       | Camp             | 30.4              | 339.7          | 32.0                   | 338.1          | 32.9                   | 337.2          | -1.6                           | -0.9                    | -2.5                            |
| 3S1E09P010<br>3S1E09P011 | 310<br>425    | L       | Amador<br>Amador | 55.1<br>65.9      | 294.4<br>283.5 | 57.5<br>67.1           | 292.0<br>282.4 | 78.8<br>100.5          | 270.7<br>249.0 | -2.4<br>-1.2                   | -21.3<br>-33.4          | -23.7<br>-34.6                  |
| 3S1E09F011<br>3S1E10A002 | 88            | U       | Amador           | 44.8              | 322.6          | 47.7                   | 319.6          | 53.4                   | 313.9          | -3.0                           | -5.7                    | -8.6                            |
| 3S1E10B008               | 200           | L       | Amador           | 49.0              | 304.6          | 50.9                   | 302.8          | 62.8                   | 290.9          | -1.9                           | -11.9                   | -13.8                           |
| 3S1E10B009               | 294           | L       | Amador           | 61.5              | 292.0          | 63.7                   | 289.8          | 81.6                   | 271.9          | -2.2                           | -17.9                   | -20.1                           |
| 3S1E10B010               | 600           | L       | Amador           | 73.1              | 280.4          | 76.9                   | 276.6          | 107.1                  | 246.4          | -3.8                           | -30.2                   | -34.0                           |
| 3S1E10B011               | 810           | D       | Amador           | 75.9              | 277.6          | 76.0                   | 277.5          | 106.7                  | 246.8          | -0.1                           | -30.7                   | -30.8                           |
| 3S1E10B014               | 690           | L       | Amador           | 78.5              | 277.1          | 81.8                   | 273.8          | 112.3                  | 243.3          | -3.3                           | -30.5                   | -33.8                           |
| 3S1E10D002               | 212           | L       | Amador           | 49.6              | 299.7          | 51.9                   | 297.4          | 67.3                   | 282.0          | -2.3                           | -15.4                   | -17.7                           |
| 3S1E10D003<br>3S1E10D004 | 322<br>616    | L       | Amador<br>Amador | 56.0<br>65.0      | 293.3<br>284.3 | 71.9<br>59.0           | 277.4<br>290.3 | 79.6<br>104.8          | 269.7<br>244.5 | -15.9<br>6.0                   | -7.7<br>-45.8           | -23.6<br>-39.8                  |
| 3S1E10D004<br>3S1E10D005 | 790           | D       | Amador           | 70.0              | 279.3          | 71.8                   | 277.5          | 104.8                  | 244.5          | -1.8                           | -35.8                   | -37.6                           |
| 3S1E10D007               | 145           | U       | Amador           | 46.3              | 314.8          | 50.2                   | 310.9          | NA                     | NA             | -3.9                           | -                       | -                               |
| 3S1E10D008               | 215           | L       | Amador           | 60.7              | 300.3          | 63.3                   | 297.7          | 58.1                   | 302.9          | -2.6                           | 5.2                     | 2.6                             |
| 3S1E10K002               | 591           | L       | Amador           | 68.6              | 290.1          | 71.0                   | 287.7          | 88.0                   | 270.7          | -2.4                           | -17.0                   | -19.4                           |
| 3S1E10N002               | 195           | U       | Amador           | 46.1              | 312.1          | NM                     | NM             | 57.8                   | 300.4          | -                              | -                       | -11.7                           |
| 3S1E10N003               | 195<br>43     | L<br>U  | Amador           | 57.2<br>29.0      | 300.8<br>340.4 | 59.0<br>29.5           | 299.0<br>339.9 | 73.3<br>32.5           | 284.7<br>336.9 | -1.8<br>-0.5                   | -14.3<br>-2.9           | -16.1<br>-3.4                   |
| 3S1E11B001<br>3S1E11C003 | 55            | U       | Amador<br>Amador | 30.4              | 340.4          | 30.2                   | 339.9          | 32.5                   | 333.1          | -0.5<br>0.2                    | -2.9<br>-1.5            | -3.4                            |
| 3S1E11G001               | 120           | U       | Amador           | 54.4              | 317.2          | 56.7                   | 314.9          | 65.3                   | 306.4          | -2.3                           | -8.5                    | -10.8                           |
| 3S1E11G002               | 350           | L       | Amador           | 99.1              | 272.6          | 107.7                  | 264.0          | 122.1                  | 249.5          | -8.6                           | -14.4                   | -23.0                           |
| 3S1E11G003               | 590           | L       | Amador           | 95.2              | 276.5          | 101.2                  | 270.5          | 127.3                  | 244.3          | -6.0                           | -26.1                   | -32.1                           |
| 3S1E11G004               | 790           | D       | Amador           | 95.2              | 276.5          | 92.6                   | 279.1          | 122.6                  | 249.1          | 2.6                            | -30.0                   | -27.4                           |
| 3S1E11M002               | 700           | L       | Amador           | 81.7              | 284.3          | 89.8                   | 276.2          | 107.4                  | 258.6          | -8.1                           | -17.6                   | -25.7                           |
| 3S1E11P006               | 400           | L       | Amador           | 99.6              | 277.1          | 100.8                  | 275.9          | 123.1                  | 253.6          | -1.1                           | -22.3                   | -23.5                           |
| 3S1E12A002<br>3S1E12D002 | 69<br>45      | U       | Amador<br>Amador | 31.1<br>30.0      | 370.3<br>354.5 | 31.6<br>33.0           | 369.7<br>351.5 | 36.5<br>35.0           | 364.9<br>349.5 | -0.5<br>-3.0                   | -4.9<br>-2.0            | -5.4<br>-5.0                    |
| 3S1E12G001               | 73            | U       | Amador           | 55.2              | 349.3          | 56.4                   | 348.1          | 58.5                   | 346.0          | -3.0                           | -2.1                    | -3.3                            |
| 3S1E12H004               | 270           | Ĺ       | Amador           | 140.5             | 267.3          | 144.8                  | 263.0          | 153.9                  | 253.9          | -4.3                           | -9.1                    | -13.4                           |
| 3S1E12H005               | 400           | L       | Amador           | 133.0             | 274.7          | 132.4                  | 275.4          | 156.1                  | 251.7          | 0.6                            | -23.7                   | -23.0                           |
| 3S1E12H006               | 480           | L       | Amador           | 131.9             | 275.8          | 130.5                  | 277.2          | 154.5                  | 253.3          | 1.4                            | -24.0                   | -22.5                           |
| 3S1E12H007               | 684           | D       | Amador           | 113.3             | 294.4          | 114.7                  | 292.9          | 139.3                  | 268.4          | -1.5                           | -24.6                   | -26.0                           |
| 3S1E12K002<br>3S1E12K003 | 300<br>475    | L       | Amador<br>Amador | 156.1<br>139.9    | 250.2<br>267.0 | 159.4<br>139.2         | 246.9<br>267.7 | 157.7<br>152.5         | 248.6<br>254.4 | -3.4<br>0.7                    | 1.7<br>-13.3            | -1.7<br>-12.6                   |
| 3S1E12K003               | 575           | D       | Amador           | 118.5             | 288.2          | 118.7                  | 288.1          | 147.1                  | 259.7          | -0.2                           | -28.4                   | -28.6                           |
| 3S1E13P005               | 135           | Ü       | Amador           | 106.2             | 293.8          | NA                     | NA             | NA                     | NA             | -                              | -                       | -                               |
| 3S1E13P006               | 255           | L       | Amador           | 121.9             | 278.1          | NA                     | NA             | NA                     | NA             | -                              | -                       | -                               |
| 3S1E13P007               | 375           | L       | Amador           | 121.5             | 278.4          | NA                     | NA             | NA                     | NA             | •                              | -                       | -                               |
| 3S1E13P008               | 605           | L       | Amador           | 106.6             | 293.3          | NA                     | NA             | NA                     | NA             | -                              | -                       | -                               |
| 3S1E14B001               | 435           | L       | Amador           | 107.9             | 276.3          | 110.2                  | 274.0          | 132.3                  | 251.9          | -2.3                           | -22.1                   | -24.5                           |
| 3S1E14D002<br>3S1E15F003 | 740<br>625    | L       | Amador<br>Amador | 83.7<br>80.5      | 288.1<br>288.5 | 83.6<br>78.8           | 288.2<br>290.2 | 96.8<br>100.3          | 275.0<br>268.7 | 0.1<br>1.8                     | -13.2<br>-21.5          | -13.1<br>-19.8                  |
| 3S1E15F003<br>3S1E15J003 | 196           | L       | Amador           | 62.0              | 282.6          | 61.0                   | 283.6          | 89.3                   | 255.3          | 1.8                            | -21.5                   | -19.8                           |
| 3S1E15M003               | 600           | L       | Amador           | 83.0              | 279.9          | 79.0                   | 283.8          | 106.7                  | 256.2          | 3.9                            | -27.7                   | -23.7                           |
| 3S1E16A004               | 603           | L       | Amador           | 75.3              | 284.0          | 77.4                   | 282.0          | 111.2                  | 248.2          | -2.1                           | -33.8                   | -35.9                           |
| 3S1E16B001               | 805           | D       | Amador           | 77.7              | 278.1          | 75.4                   | 280.4          | 113.9                  | 241.9          | 2.3                            | -38.5                   | -36.2                           |
| 3S1E16C002               | 190           | L       | Amador           | 50.6              | 293.8          | 51.0                   | 293.4          | 74.0                   | 270.4          | -0.4                           | -23.0                   | -23.4                           |
| 3S1E16C003               | 305           | L       | Amador           | 62.9              | 281.4          | 56.9                   | 287.4          | 96.3                   | 248.0          | 6.0                            | -39.4                   | -33.4                           |
| 3S1E16C004<br>3S1E16E004 | 375<br>105    | L<br>U  | Amador<br>Amador | 67.0<br>44.4      | 277.2<br>307.3 | 59.0<br>46.0           | 285.2<br>305.7 | 100.2<br>55.9          | 244.0<br>295.8 | 8.0<br>-1.6                    | -41.2<br>-9.8           | -33.2<br>-11.5                  |
| 3S1E16E004<br>3S1E16L002 | 151           | L       | Amador           | 50.2              | 296.1          | 53.7                   | 292.6          | 56.5                   | 289.8          | -3.5                           | -9.8<br>-2.8            | -6.3                            |
| 3S1E16P005               | 75            | Ü       | Amador           | 38.5              | 316.0          | 39.0                   | 315.5          | 57.1                   | 297.5          | -0.5                           | -18.0                   | -18.6                           |
| 3S1E16R001               | 239           | L       | Amador           | 70.1              | 292.5          | 71.2                   | 291.3          | 92.3                   | 270.2          | -1.1                           | -21.1                   | -22.3                           |
| 3S1E17B004               | 248           | L       | Amador           | 38.3              | 299.4          | 39.7                   | 298.0          | 50.0                   | 287.7          | -1.4                           | -10.3                   | -11.7                           |
| 3S1E17D003               | 108           | L       | Bernal           | 27.0              | 298.1          | 28.7                   | 296.5          | 41.1                   | 284.0          | -1.7                           | -12.5                   | -14.1                           |
| 3S1E17D004               | 236           | L       | Bernal           | 27.0              | 298.1          | 28.9                   | 296.3          | 43.0                   | 282.1          | -1.9                           | -14.2                   | -16.0                           |
| 3S1E17D005               | 308           | L       | Bernal           | 27.0              | 298.2          | 28.7                   | 296.4          | 43.0                   | 282.1          | -1.7                           | -14.3                   | -16.0                           |
| 3S1E17D006<br>3S1E17D007 | 408<br>684    | L<br>D  | Bernal<br>Bernal | 26.9<br>19.7      | 298.3<br>305.4 | 27.8<br>19.2           | 297.4<br>305.9 | 29.0<br>19.6           | 296.1<br>305.5 | -0.9<br>0.5                    | -1.2<br>-0.4            | -2.1<br>0.1                     |
| 3S1E17D007<br>3S1E17D010 | 425           | L       | Bernal           | 29.9              | 298.2          | 31.2                   | 296.9          | 45.3                   | 282.8          | -1.4                           | -0.4<br>-14.1           | -15.5                           |
| 3S1E17D010               | 603           | L       | Bernal           | 26.4              | 298.4          | 27.2                   | 290.9          | 34.7                   | 290.1          | -0.8                           | -7.5                    | -8.3                            |
| 3S1E18A005               | 454           | L       | Bernal           | 32.2              | 295.1          | 34.5                   | 292.8          | 39.2                   | 288.1          | -2.3                           | -4.7                    | -7.0                            |
| 3S1E18E004               | 83            | Ū       | Bernal           | 22.8              | 297.4          | 24.2                   | 296.0          | 30.3                   | 290.0          | -1.4                           | -6.1                    | -7.4                            |
| 3S1E18J002               | 71            | U       | Bernal           | 24.5              | 298.5          | 26.0                   | 297.0          | 32.7                   | 290.3          | -1.5                           | -6.7                    | -8.2                            |
| 3S1E18N001               | 708           | L       | Bernal           | 24.3              | 295.1          | 25.9                   | 293.5          | 34.7                   | 284.8          | -1.6                           | -8.8                    | -10.4                           |

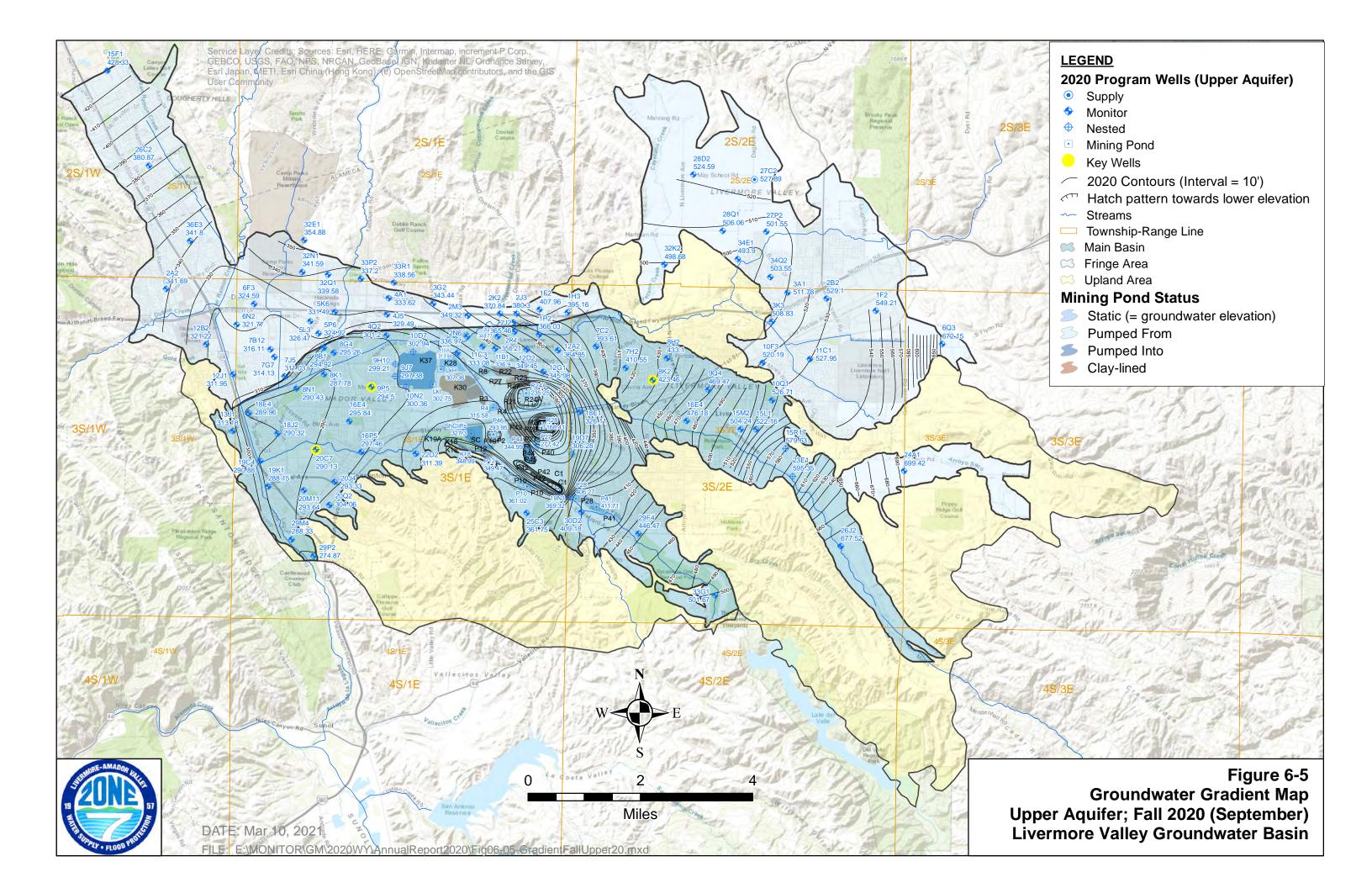


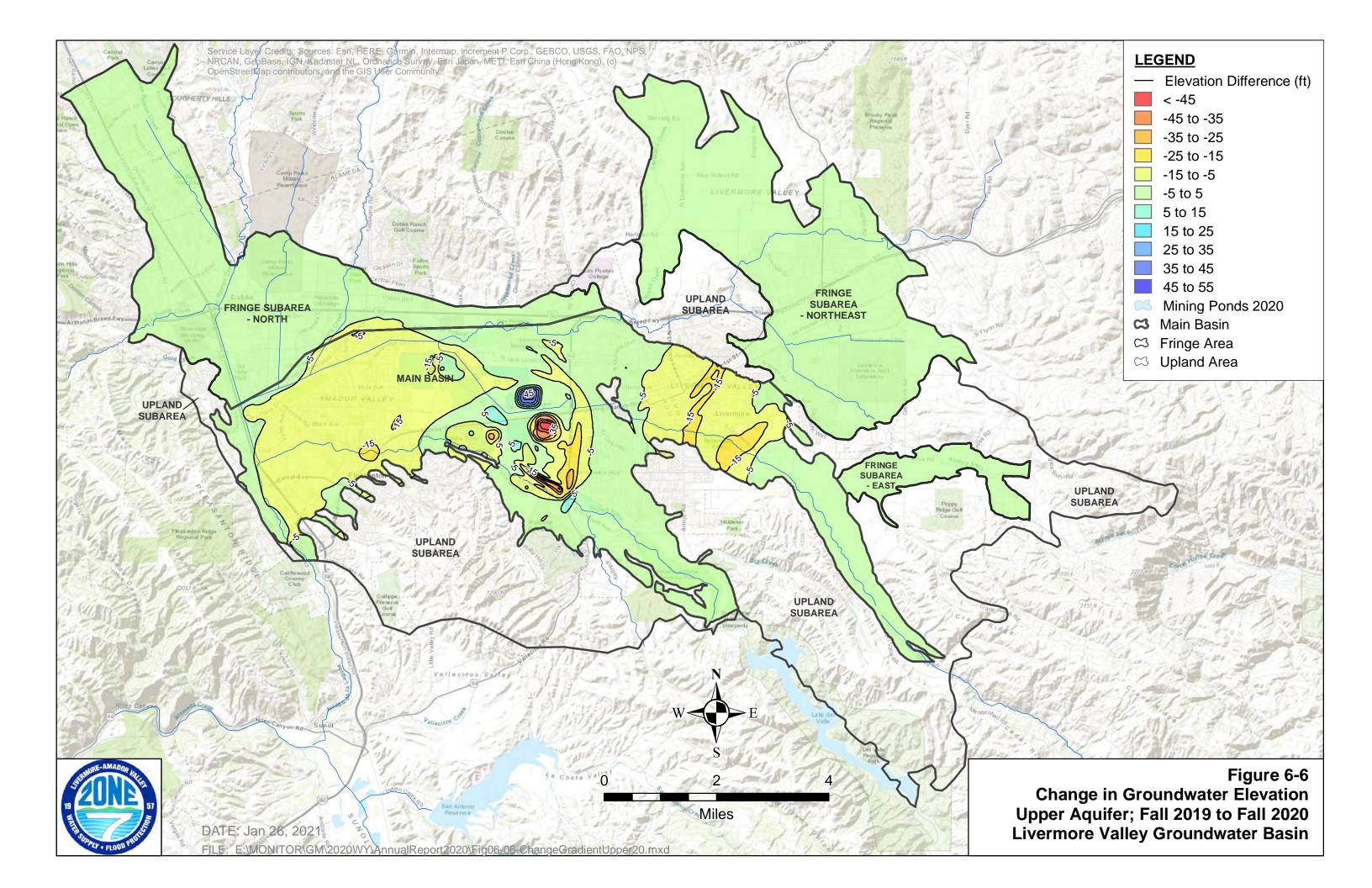

|                          |               |         |                      |                   | Fall 2019      |                        | Spring 2020    |                        | Fall 2020      |                                | Change in Elevation (ft)         |                                 |  |
|--------------------------|---------------|---------|----------------------|-------------------|----------------|------------------------|----------------|------------------------|----------------|--------------------------------|----------------------------------|---------------------------------|--|
| Well<br>Number           | Well<br>Depth | Aquifer | Subarea              | Depth to<br>Water | GW Elev        | Depth to<br>Water (ft) | GW<br>Elev     | Depth to<br>Water (ft) | GW<br>Elev     | Sea<br>Fall 19 to<br>Spring 20 | sonal<br>Spring 20 to<br>Fall 20 | Annual<br>Fall 19 to<br>Fall 20 |  |
| 1S4E31P005               | 24            | U       | Tracy                | 17.6              | 42.4           | 18.4                   | 41.6           | 18.5                   | 41.5           | -0.8                           | -0.1                             | -0.9                            |  |
| 2S1E32E001               | 70            | U       | None                 | 34.5              | 358.0          | 36.0                   | 356.6          | 37.7                   | 354.9          | -1.5                           | -1.7                             | -3.2                            |  |
| 2S1E32N001               | 44            | U       | Camp                 | 17.7              | 343.1          | 18.2                   | 342.6          | 19.2                   | 341.6          | -0.5                           | -1.1                             | -1.6                            |  |
| 2S1E32Q001               | 45            | U       | Camp                 | 26.1              | 341.5          | 26.8                   | 340.7          | 28.0                   | 339.6          | -0.8                           | -1.1                             | -1.9                            |  |
| 2S1E33L001               | 80            | U       | None                 | 48.1              | 341.3          | 51.1                   | 338.4          | 52.0                   | 337.5          | -3.0                           | -0.9                             | -3.9                            |  |
| 2S1E33P002<br>3S1E19A010 | 55<br>331     | U       | Camp<br>Bernal       | 30.4<br>39.9      | 339.7<br>297.2 | 32.0<br>42.1           | 338.1<br>294.9 | 32.9<br>50.7           | 337.2<br>286.3 | -1.6<br>-2.2                   | -0.9<br>-8.6                     | -2.5<br>-10.8                   |  |
| 3S1E19A010               | 330           | L       | Bernal               | 34.3              | 297.2          | 36.5                   | 294.9          | 44.7                   | 289.5          | -2.2<br>-2.2                   | -8.2                             | -10.6                           |  |
| 3S1E19C004               | 78            | U       | Bernal               | 22.7              | 299.5          | 24.3                   | 297.9          | 31.4                   | 290.9          | -1.6                           | -7.0                             | -8.6                            |  |
| 3S1E20B002               | 500           | L       | Bernal               | NM                | NM             | NA                     | NA             | NM                     | NM             | -                              | -                                | -                               |  |
| 3S1E20C007               | 153           | U       | Bernal               | 40.1              | 298.5          | 41.9                   | 296.8          | 48.5                   | 290.1          | -1.8                           | -6.6                             | -8.4                            |  |
| 3S1E20C008               | 315           | L       | Bernal               | 41.1              | 297.6          | 42.6                   | 296.1          | 52.2                   | 286.5          | -1.5                           | -9.6                             | -11.1                           |  |
| 3S1E20C009               | 515           | U       | Bernal               | 41.4              | 297.4          | 43.4                   | 295.4          | 51.8                   | 287.0          | -2.0                           | -8.4                             | -10.4                           |  |
| 3S1E20J004<br>3S1E20M011 | 72<br>71      | U       | Bernal<br>Bernal     | 31.5<br>24.0      | 300.1<br>301.8 | 33.1<br>25.5           | 298.5<br>300.3 | 38.3<br>32.1           | 293.3<br>293.6 | -1.6<br>-1.5                   | -5.2<br>-6.6                     | -6.8<br>-8.1                    |  |
| 3S1E20W011               | 65            | U       | Bernal               | 18.7              | 307.2          | 19.0                   | 306.9          | 21.8                   | 304.1          | -0.3                           | -2.8                             | -3.1                            |  |
| 3S1E22D002               | 72            | Ü       | Amador               | 47.0              | 321.1          | 51.4                   | 316.7          | 56.7                   | 311.4          | -4.4                           | -5.3                             | -9.7                            |  |
| 3S1E23J001               | 120           | L       | Amador               | 87.6              | 340.6          | 92.2                   | 336.0          | 93.8                   | 334.4          | -4.6                           | -1.6                             | -6.2                            |  |
| 3S1E24Q001               | 440           | L       | Amador               | 86.0              | 341.5          | 90.8                   | 336.7          | 100.3                  | 327.2          | -4.8                           | -9.5                             | -14.3                           |  |
| 3S1E25C003               | 146           | U       | Amador               | 87.9              | 366.2          | 90.7                   | 363.5          | 92.4                   | 361.8          | -2.8                           | -1.7                             | -4.5                            |  |
| 3S1E29M004               | 57            | U       | Castle               | 16.3              | 294.6          | 16.6                   | 294.4          | 22.6                   | 288.3          | -0.2                           | -6.1                             | -6.3                            |  |
| 3S1E29P002<br>3S1W01B009 | 42<br>162     | U<br>L  | Bernal<br>Dublin     | 26.8<br>8.5       | 276.0<br>325.1 | 26.4<br>8.2            | 276.4<br>325.3 | 28.0<br>9.1            | 274.9<br>324.4 | 0.4                            | -1.5<br>-0.9                     | -1.1<br>-0.6                    |  |
| 3S1W01B009<br>3S1W01B010 | 414           | L       | Dublin               | 4.3               | 329.3          | 289.0                  | 44.6           | 4.0                    | 329.6          | -284.7                         | 285.0                            | 0.3                             |  |
| 3S1W01B011               | 560           | L       | Dublin               | 8.2               | 325.5          | 7.0                    | 326.7          | 12.8                   | 320.9          | 1.2                            | -5.8                             | -4.6                            |  |
| 3S1W02A002               | 47            | U       | Dublin               | 24.8              | 344.6          | 24.6                   | 344.8          | 27.7                   | 341.7          | 0.2                            | -3.1                             | -2.9                            |  |
| 3S1W12B002               | 40            | U       | Dublin               | 20.9              | 322.0          | 19.5                   | 323.4          | 21.7                   | 321.2          | 1.4                            | -2.1                             | -0.8                            |  |
| 3S1W12J001               | 62            | U       | Dublin               | 16.2              | 313.1          | 15.7                   | 313.6          | 17.4                   | 312.0          | 0.5                            | -1.7                             | -1.2                            |  |
| 3S1W13J001               | 48            | U       | Castle               | 29.9              | 314.0          | 26.9                   | 317.0          | 30.8                   | 313.2          | 3.0                            | -3.8                             | -0.9                            |  |
| 3S2E01F002<br>3S2E02B002 | 69<br>46      | U       | Spring<br>Spring     | 23.5<br>9.6       | 549.5<br>529.9 | 23.3<br>8.9            | 549.7<br>530.6 | 23.8<br>10.4           | 549.2<br>529.1 | 0.2<br>0.7                     | -0.5<br>-1.5                     | -0.3<br>-0.8                    |  |
| 3S2E02B002<br>3S2E03A001 | 54            | U       | Spring               | 5.6               | 512.0          | 4.1                    | 513.5          | 5.9                    | 511.8          | 1.5                            | -1.8                             | -0.8                            |  |
| 3S2E03K003               | 60            | U       | Mocho I              | 13.6              | 509.3          | 13.6                   | 509.2          | 14.0                   | 508.8          | -0.1                           | -0.4                             | -0.4                            |  |
| 3S2E05N001               | 210           | M       | Mocho II             | 29.8              | 414.2          | 27.5                   | 416.6          | 34.1                   | 410.0          | 2.3                            | -6.6                             | -4.3                            |  |
| 3S2E07C002               | 49            | U       | Mocho II             | 25.3              | 395.5          | 24.7                   | 396.2          | 27.2                   | 393.6          | 0.7                            | -2.6                             | -1.9                            |  |
| 3S2E07H002               | 54            | U       | Mocho II             | 27.1              | 415.7          | 26.0                   | 416.9          | 32.3                   | 410.6          | 1.1                            | -6.3                             | -5.2                            |  |
| 3S2E07N002               | 162           | U       | Amador               | 120.0             | 302.0          | 122.7                  | 299.4          | 135.5                  | 286.5          | -2.7                           | -12.8                            | -15.5                           |  |
| 3S2E07P003<br>3S2E07R002 | 510<br>805    | L<br>D  | Amador<br>Mocho II   | 136.4<br>3.2      | 295.0<br>442.8 | 141.3<br>2.8           | 290.2<br>443.2 | 166.0<br>4.0           | 265.5<br>442.0 | -4.9<br>0.4                    | -24.7<br>-1.2                    | -29.6<br>-0.8                   |  |
| 3S2E07R002<br>3S2E07R003 | 583           | L       | Upland               | 85.5              | 360.5          | 22.9                   | 423.2          | NA                     | NA             | 62.7                           | -1.2                             | -0.6                            |  |
| 3S2E08H002               | 46            | U       | Mocho II             | 29.6              | 440.1          | 22.1                   | 447.5          | 36.5                   | 433.1          | 7.4                            | -14.4                            | -7.0                            |  |
| 3S2E08H003               | 195           | L       | Mocho II             | 50.6              | 426.7          | 45.8                   | 431.5          | 56.1                   | 421.2          | 4.8                            | -10.3                            | -5.5                            |  |
| 3S2E08H004               | 385           | L       | Mocho II             | 105.2             | 371.8          | 48.2                   | 428.7          | 78.2                   | 398.8          | 57.0                           | -30.0                            | 27.0                            |  |
| 3S2E08K002               | 74            | U       | Mocho II             | 32.4              | 432.4          | 31.5                   | 433.3          | 41.3                   | 423.5          | 1.0                            | -9.9                             | -8.9                            |  |
| 3S2E08N002               | 526           | L       | Mocho II             | 48.4              | 405.3          | 75.4                   | 378.3          | 99.0                   | 354.6          | -27.0                          | -23.6                            | -50.6                           |  |
| 3S2E08P001<br>3S2E08Q009 | 273<br>114    | L       | Mocho II<br>Mocho II | 39.3<br>26.2      | 428.9<br>438.5 | 38.0<br>25.2           | 430.2<br>439.5 | 48.5<br>36.1           | 419.7<br>428.6 | 1.3<br>1.1                     | -10.5<br>-10.9                   | -9.2<br>-9.8                    |  |
| 3S2E08Q009<br>3S2E09Q004 | 80            | U       | Mocho II             | 26.2              | 438.5          | 25.2                   | 439.5          | 36.0                   | 428.6          | 1.1<br>-1.2                    | -10.9<br>-11.9                   | -9.8<br>-13.0                   |  |
| 3S2E10F003               | 45            | Ü       | Mocho I              | 13.1              | 521.8          | 13.5                   | 521.3          | 14.7                   | 520.2          | -0.4                           | -1.1                             | -1.6                            |  |
| 3S2E10Q001               | 44            | Ü       | Mocho II             | 24.1              | 531.3          | 26.0                   | 529.4          | 28.7                   | 526.7          | -1.9                           | -2.7                             | -4.6                            |  |
| 3S2E10Q002               | 325           | L       | Mocho II             | 29.4              | 520.2          | 32.1                   | 517.3          | 34.0                   | 515.4          | -3.0                           | -1.9                             | -4.9                            |  |
| 3S2E11C001               | 66            | U       | Mocho I              | 27.1              | 530.0          | 27.7                   | 528.7          | 28.4                   | 528.0          | -1.3                           | -0.7                             | -2.1                            |  |
| 3S2E12C004               | 108           | U       | Spring               | NA<br>93.5        | NA<br>F47.6    | 55.6                   | 535.8          | NA<br>92.4             | NA<br>F46.7    | -                              | -                                | - 0.0                           |  |
| 3S2E12J003<br>3S2E14A003 | 160<br>110    | U       | Spring<br>Mocho I    | 83.5<br>69.3      | 547.6<br>532.5 | NA<br>NA               | NA<br>NA       | 82.1<br>NA             | 546.7<br>NA    | -                              | -                                | -0.8                            |  |
| 3S2E14A003<br>3S2E14B001 | 300           | L       | Mocho I              | 109.6             | 483.8          | 64.1                   | 529.2          | 65.0                   | 528.3          | 45.5                           | -0.9                             | 44.5                            |  |
| 3S2E15E002               | 192           | L       | Mocho II             | 27.1              | 522.6          | 40.5                   | 509.2          | 55.2                   | 494.5          | -13.4                          | -14.7                            | -28.1                           |  |
| 3S2E15L001               | 41            | Ū       | Mocho II             | 12.4              | 549.1          | 29.8                   | 531.7          | 39.3                   | 522.2          | -17.3                          | -9.6                             | -26.9                           |  |
| 3S2E15M002               | 45            | U       | Mocho II             | 30.7              | 518.7          | 32.9                   | 516.6          | 45.2                   | 504.2          | -2.1                           | -12.4                            | -14.5                           |  |
| 3S2E15Q006               | 301           | L       | Mocho II             | 51.1              | 526.5          | 50.0                   | 527.5          | 59.3                   | 518.3          | 1.1                            | -9.3                             | -8.2                            |  |
| 3S2E15R017               | 63            | U       | Mocho II             | 13.1              | 579.4          | 9.1                    | 583.3          | 12.8                   | 579.6          | 4.0                            | -3.7                             | 0.3                             |  |
| 3S2E15R018               | 138<br>240    | L       | Mocho II             | 22.0              | 570.5<br>494.2 | 12.8                   | 579.7<br>492.8 | 26.2                   | 566.3<br>449.7 | 9.2<br>-1.4                    | -13.4<br>-43.1                   | -4.2<br>-44.5                   |  |
| 3S2E16A003<br>3S2E16C001 | 584           | L       | Mocho II<br>Mocho II | 32.8<br>75.0      | 494.2          | 34.3<br>59.1           | 492.8<br>451.9 | 77.4<br>71.5           | 449.7          | -1.4<br>15.9                   | -43.1<br>-12.4                   | -44.5<br>3.5                    |  |
| 3S2E16C001<br>3S2E16E004 | 45            | U       | Mocho II             | 16.2              | 490.1          | 17.6                   | 488.7          | 30.1                   | 476.2          | -1.5                           | -12.5                            | -13.9                           |  |
| 3S2E10E004<br>3S2E17E002 | 94            | Ü       | Mocho II             | NM                | NM             | NA                     | NA             | NA                     | NA             | -1.5                           | -12.5                            | -10.9                           |  |
| 3S2E18B001               | 497           | Ĺ       | Amador               | 138.2             | 300.4          | 114.0                  | 324.6          | NM                     | NM             | 24.2                           | -                                | -                               |  |
| 3S2E18E001               | 134           | U       | Amador               | 87.9              | 336.0          | 83.2                   | 340.7          | 97.8                   | 326.1          | 4.7                            | -14.6                            | -9.9                            |  |
|                          |               |         |                      |                   |                |                        |                | 4000                   | 0000           | 40.4                           |                                  | 40.0                            |  |
| 3S2E19D007<br>3S2E19D008 | 180<br>260    | U<br>L  | Amador<br>Amador     | 90.8<br>91.2      | 324.3<br>323.8 | 101.2<br>101.5         | 313.8<br>313.5 | 108.8<br>109.2         | 306.3<br>305.8 | -10.4<br>-10.3                 | -7.6<br>-7.7                     | -18.0<br>-18.0                  |  |

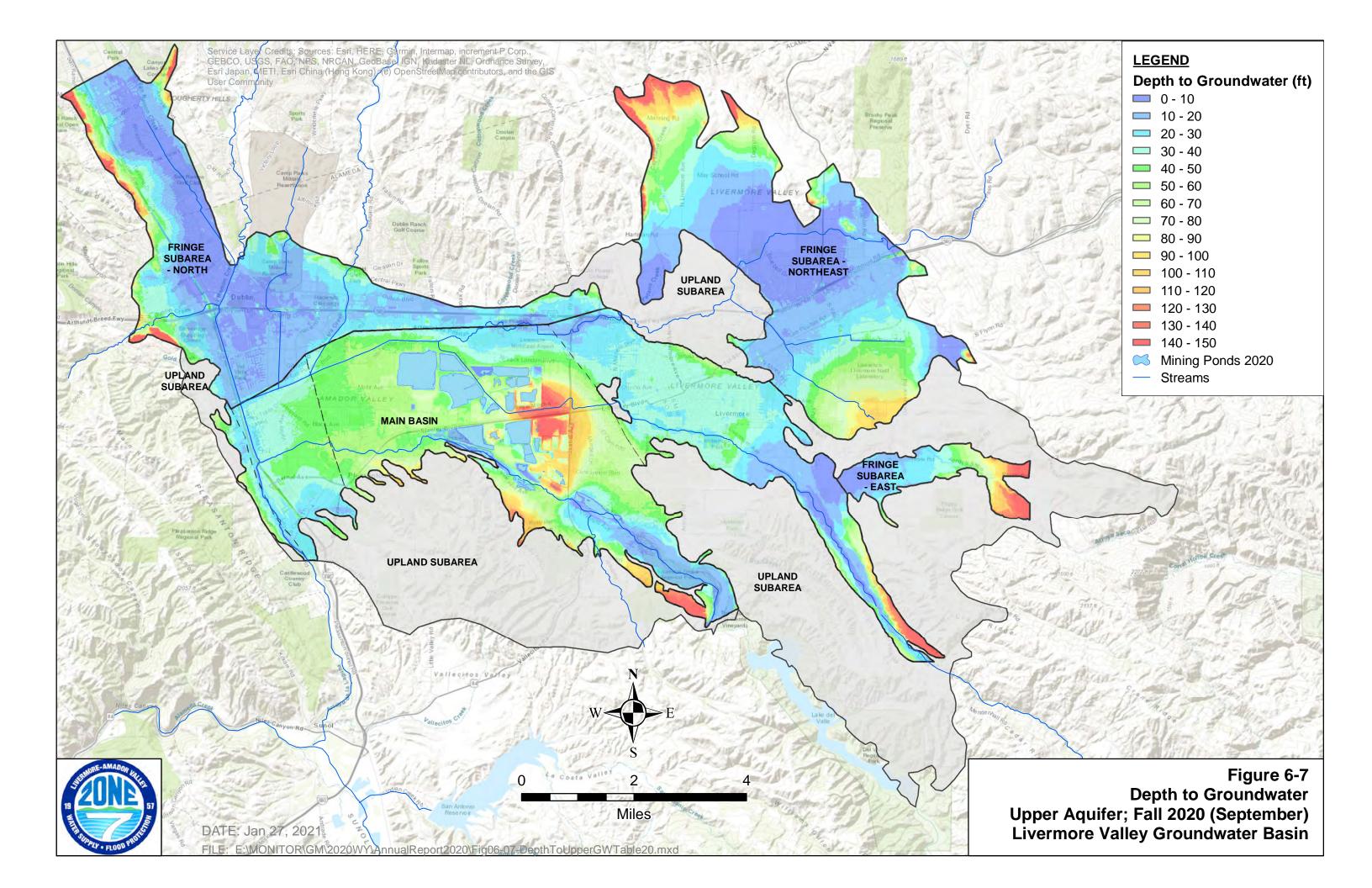



|            |       |         |          | Fall 2019 |                | Spring 2020 |       | Fall 2020  |       | Change in Elevation (ft) |              | (ft)       |
|------------|-------|---------|----------|-----------|----------------|-------------|-------|------------|-------|--------------------------|--------------|------------|
|            |       |         |          |           |                |             |       |            |       | Sea                      | sonal        | Annual     |
| Well       | Well  |         |          | Depth to  |                | Depth to    | GW    | Depth to   | GW    | Fall 19 to               | Spring 20 to | Fall 19 to |
| Number     | Depth | Aquifer | Subarea  | Water     | <b>GW Elev</b> | Water (ft)  | Elev  | Water (ft) | Elev  | Spring 20                | Fall 20      | Fall 20    |
| 1S4E31P005 | 24    | U       | Tracy    | 17.6      | 42.4           | 18.4        | 41.6  | 18.5       | 41.5  | -0.8                     | -0.1         | -0.9       |
| 2S1E32E001 | 70    | U       | None     | 34.5      | 358.0          | 36.0        | 356.6 | 37.7       | 354.9 | -1.5                     | -1.7         | -3.2       |
| 2S1E32N001 | 44    | U       | Camp     | 17.7      | 343.1          | 18.2        | 342.6 | 19.2       | 341.6 | -0.5                     | -1.1         | -1.6       |
| 2S1E32Q001 | 45    | U       | Camp     | 26.1      | 341.5          | 26.8        | 340.7 | 28.0       | 339.6 | -0.8                     | -1.1         | -1.9       |
| 2S1E33L001 | 80    | U       | None     | 48.1      | 341.3          | 51.1        | 338.4 | 52.0       | 337.5 | -3.0                     | -0.9         | -3.9       |
| 2S1E33P002 | 55    | U       | Camp     | 30.4      | 339.7          | 32.0        | 338.1 | 32.9       | 337.2 | -1.6                     | -0.9         | -2.5       |
| 3S2E19D010 | 470   | L       | Amador   | 98.1      | 316.8          | 101.0       | 313.9 | 127.9      | 287.0 | -2.9                     | -26.9        | -29.8      |
| 3S2E19N003 | 120   | U       | Amador   | 40.3      | 378.2          | 44.5        | 374.0 | 49.1       | 369.3 | -4.3                     | -4.6         | -8.9       |
| 3S2E19N004 | 203   | L       | Amador   | 32.0      | 385.9          | 37.5        | 380.4 | 45.1       | 372.9 | -5.5                     | -7.5         | -13.0      |
| 3S2E20M001 | 184   | L       | Amador   | 49.9      | 428.9          | 49.2        | 429.6 | 55.4       | 423.4 | 0.7                      | -6.2         | -5.5       |
| 3S2E22B001 | 32    | U       | Mocho II | 15.1      | 570.8          | 15.1        | 570.8 | Dry        | Dry   | 0.0                      | -            | -          |
| 3S2E23E001 | 40    | U       | Mocho II | 16.8      | 596.6          | 16.4        | 597.0 | 18.0       | 595.4 | 0.3                      | -1.6         | -1.3       |
| 3S2E23E002 | 110   | L       | Mocho II | 14.6      | 598.7          | 14.3        | 598.9 | 16.1       | 597.1 | 0.3                      | -1.8         | -1.5       |
| 3S2E24A001 | 46    | U       | Mocho I  | 19.8      | 698.0          | 19.5        | 698.2 | 18.3       | 699.4 | 0.3                      | 1.2          | 1.5        |
| 3S2E26J002 | 44    | U       | Mocho II | 10.5      | 679.5          | 7.3         | 682.6 | 12.4       | 677.5 | 3.2                      | -5.1         | -1.9       |
| 3S2E29F004 | 36    | U       | Amador   | 8.3       | 449.2          | 8.2         | 449.3 | 11.0       | 446.5 | 0.1                      | -2.8         | -2.8       |
| 3S2E30C001 | 150   | L       | Amador   | 24.2      | 415.3          | 32.0        | 407.4 | 34.0       | 405.4 | -7.8                     | -2.0         | -9.8       |
| 3S2E30D002 | 44    | U       | Amador   | 21.3      | 410.3          | 21.5        | 410.1 | 22.4       | 409.2 | -0.2                     | -0.9         | -1.2       |
| 3S2E32E007 | 37    | U       | Upland   | 19.5      | 591.5          | NA          | NA    | 17.8       | 593.1 | -                        | -            | 1.6        |
| 3S2E33G001 | 17    | U       | Amador   | 9.1       | 502.5          | 9.0         | 502.5 | 9.9        | 501.7 | 0.1                      | -0.9         | -0.8       |
| 3S3E06Q003 | 30    | U       | Altamont | 8.9       | 672.2          | 11.8        | 669.2 | 8.9        | 672.2 | -2.9                     | 2.9          | 0.0        |
| 3S3E07D002 | 72    | U       | Spring   | 46.2      | 576.3          | NA          | NA    | NA         | NA    | -                        | -            | -          |

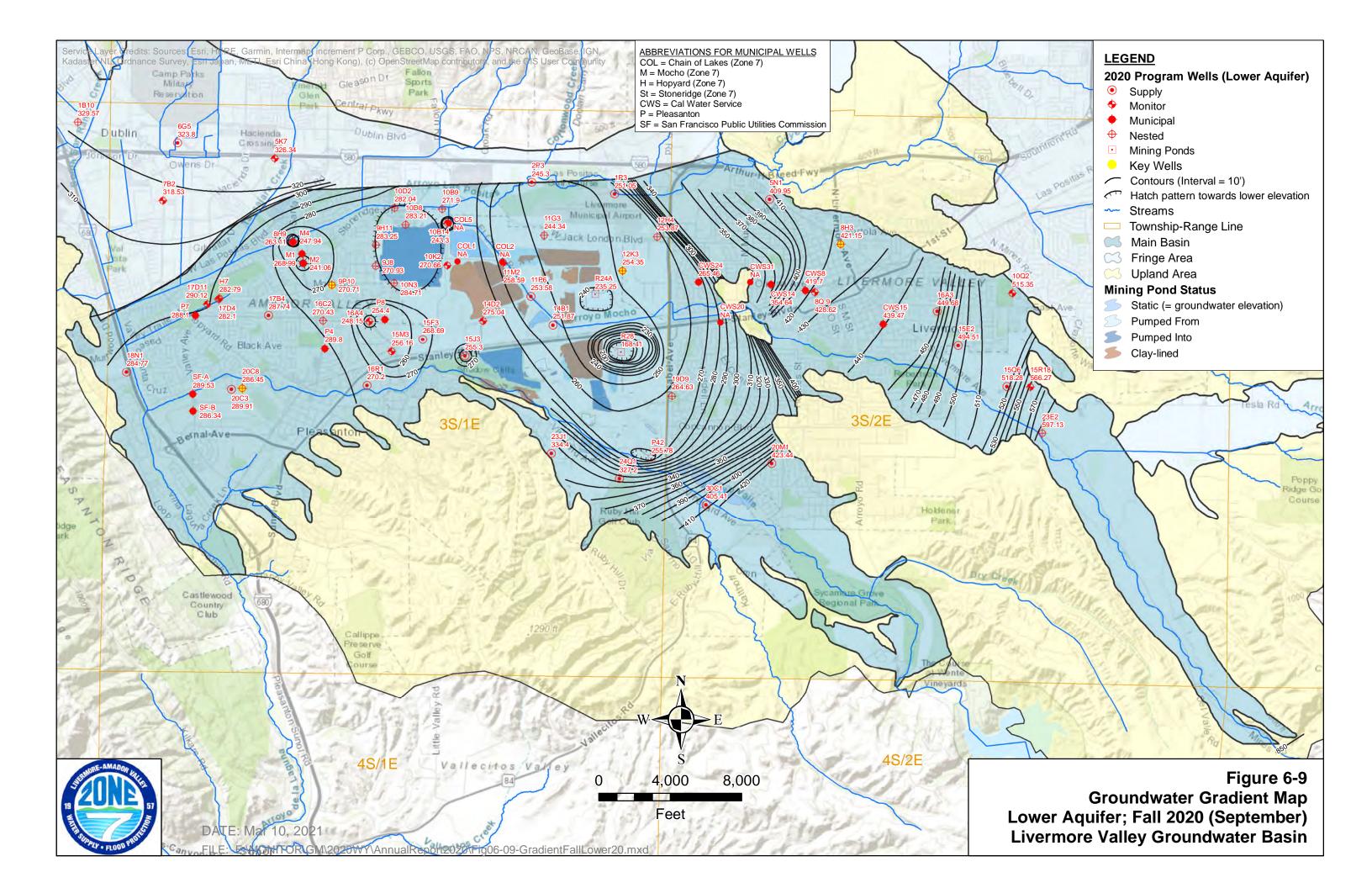


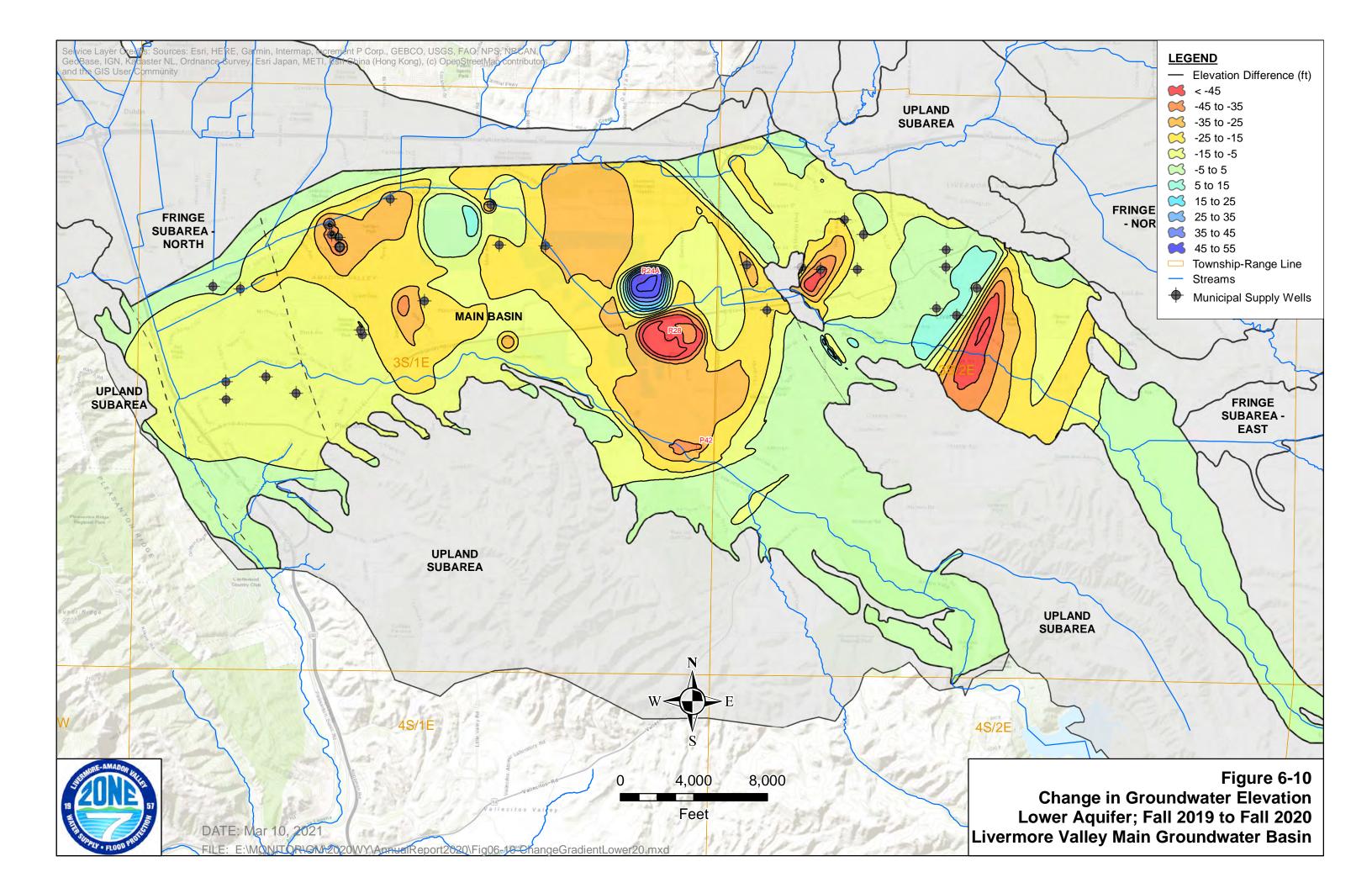



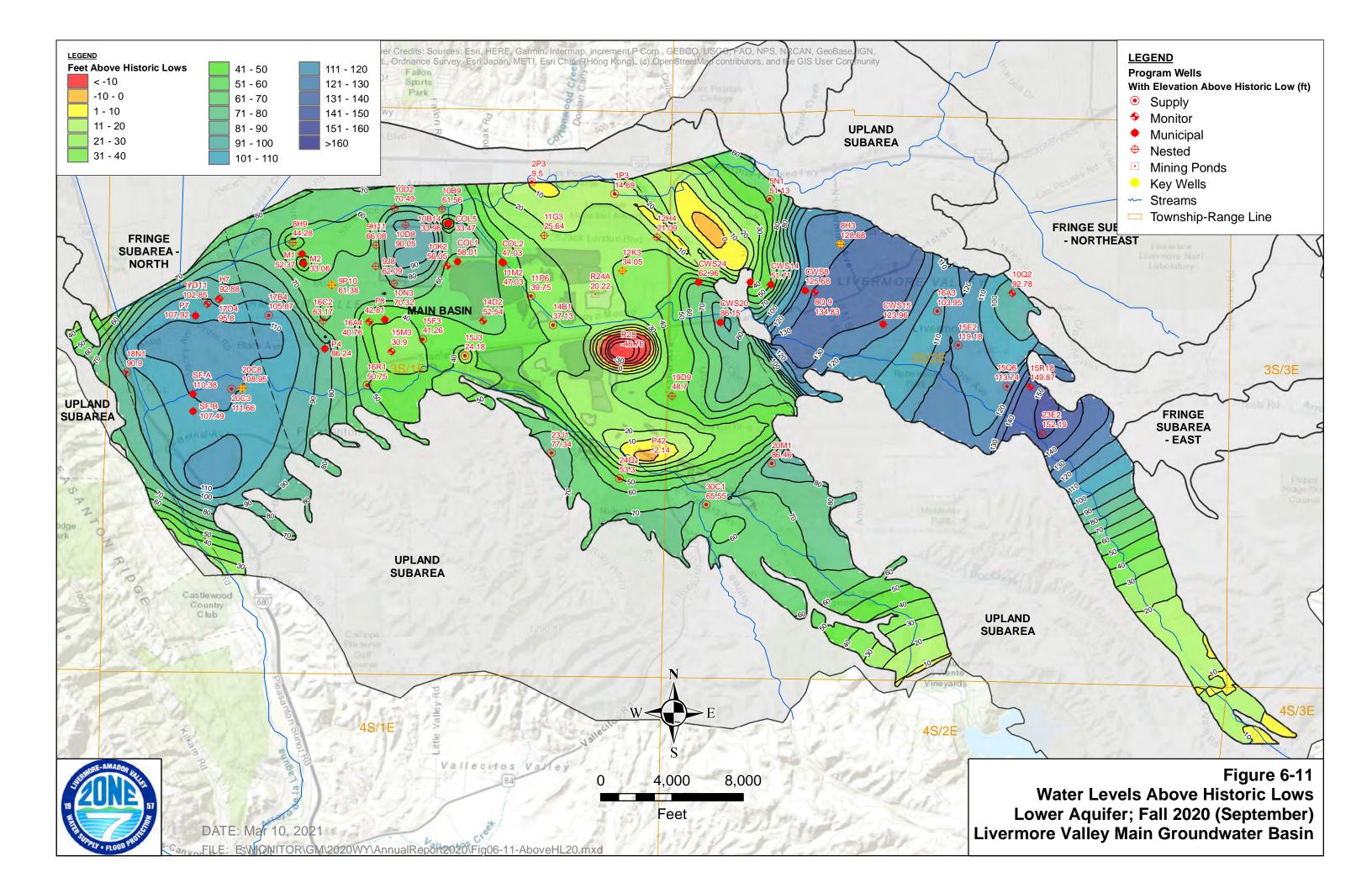





#### FIGURE 6-3 HISTORICAL KEY WELL HYDROGRAPHS 1901 to 2020 WATER YEARS
















## 7 Groundwater Quality

## 7.1 Program Description

## 7.1.1 Monitoring Network

Background information regarding the Groundwater Quality Program is provided in *Sections 3.3.3 and 4.6* of the Alternative GSP. The main purpose of monitoring groundwater quality is to assure that remediation of past groundwater degradation is proceeding and that no new degradation has occurred or is occurring. Zone 7 maintains a robust monitoring network of 218 wells that are sampled at least annually for water quality analyses. Each well in the program was sampled to fulfill one or more specific monitoring objectives. *Table 7-1* lists all the wells in the routine sampling program, the represented subbasin and aquifer, the frequency of sampling, and any other programs that are satisfied by their sampling. Additional well construction details for each of the wells in the program are provided in *Table 6-2. Figure 7-1* shows the well locations.

#### 7.1.2 Constituents of Concern

#### 7.1.2.1 Metals and Minerals

Zone 7 conducts annual sampling and analysis for inorganic constituents-of-concern for meeting the Livermore Valley Groundwater Basin (Basin) groundwater quality objectives. The primary constituents include TDS, nitrate, boron, and total chromium. The following is a summary of the groundwater quality objectives and minimum thresholds for these constituents.

- TDS (Main Basin): 500 mg/L, (State secondary maximum contaminant level [MCL], recommended range)
- TDS (Fringe Areas): 1,000 mg/L, (State secondary MCL, upper range)
- Nitrate (as Nitrogen [N]): 10 mg/L (State primary MCL)
- Boron: 1.4 mg/L (1,400 micrograms per liter [μg/L]) (an agricultural and human health target)
- Total Chromium (Cr): 0.05 mg/L (50 μg/L) (State primary MCL)

#### **7.1.2.2 Other CECs**

Per- and polyfluoroalkyl substances (PFAS) are a large group of human-made substances that do not occur naturally in the environment. PFAS are classified by the Environmental Protection

Agency (EPA) as "contaminants of emerging concern" (CECs). These substances have been used extensively in the United States since the 1940's, particularly in surface coating and protectant formulations due to their ability to repel oil, grease, and water. There is limited research to date, but some studies show that they may cause adverse health effects. Additional research is needed to determine the full scope of PFAS impacts on human health.

While there are no current federal or California State limits (e.g., MCLs), both the EPA and California State Water Resources Control Board Division of Drinking Water's (DDW) have published regulatory limits for PFAS compounds (see *Table 7-A* below).

Table 7-A: Regulatory Limits for PFAS Compounds (in ppt)

| Agency    | Type of Limit                      | PFOS | PFOA | PFBS** |
|-----------|------------------------------------|------|------|--------|
|           | Screening Level                    | 40*  | 40*  | -      |
| US EPA    | Preliminary Remediation Goal (PRG) | 70*  | 70*  | -      |
| SWRCB-DDW | Notification Level (NL)            | 6.1  | 5.1  | 500    |
| SWKCB-DDW | Response Level (RL)                | 40   | 10   | 5,000  |

<sup>\*</sup> Either individually or combined.

## 7.1.3 Program Changes for the Water Year

The Sampling Program changes made in the 2020 WY involved one of the same monitoring well changes identified in *Section 6.1.2* for the Groundwater Elevation Program and shown below in *Table 7-B.* 

Table 7-B: Program Wells Changes during the Water Year

| Action                               | Reason                                                       | Note                                        |  |  |
|--------------------------------------|--------------------------------------------------------------|---------------------------------------------|--|--|
| Well 3S/3E 6Q 4 Removed from program | Well was destroyed                                           | Nearby 3S/3E 6Q 3 is still in program       |  |  |
| Well 3S/2E 32E 7<br>Added to program | Down-gradient of ponds at Del<br>Valle Water Treatment Plant | Already in<br>Groundwater Levels<br>Program |  |  |

Up until recently, CWS did not consistently test their Livermore municipal supply wells for all four constituents-of-concern (TDS, Nitrate, Boron, and Chromium) discussed in this report. At Zone 7's

<sup>\*\*</sup> Pending

request, CWS tested some of their well samples for the four constituents of concern and suppled the results to Zone 7 starting in the 2020 WY.

In March 2019, the DDW launched a state-wide phased investigation and issued orders to operators of hundreds of susceptible drinking water sources, including Zone 7 and City of Pleasanton, to conduct quarterly PFAS monitoring for at least one year. Since then, DDW also issued orders to operators of selected landfills, airports, and chrome-plating facilities to conduct PFAS monitoring and investigations.

During the 2020 WY, 60 wells were sampled and tested for PFAS compounds (see *Section 7.1.2.2* above), some more than once. This total includes data from seven Zone 7, six CWS, and three City of Pleasanton municipal wells. In addition to the DDW-required quarterly monitoring of the municipal wells, Zone 7 sampled and tested several other monitoring program wells for PFAS to determine if PFAS contamination is widespread. Due to the prevalence of PFAS in the environment and the extremely low reporting limits (i.e., parts per trillion), the groundwater from these wells was sampled using DDW's PFAS Sampling Guidelines (DDW, 2020). Also in 2020, Zone 7 hired Jacobs Engineering, Inc. to conduct a PFAS Potential Source Investigation (*Jacobs, 2020*) that included recommendations for additional sampling of existing monitoring wells. *Section 7.2.6* of this report includes a summary of the Jacobs report and testing results from the wells sampled this year for PFAS.

### 7.2 Results for the 2020 Water Year

#### 7.2.1 Introduction

Concentrations and spatial distribution of the constituents tracked by Zone 7 are presented in the following figures and tables:

- Table 7-2 contains the groundwater quality results for select metals and minerals from groundwater samples collected for the Groundwater Quality Program during the 2020 WY.
- Table 7-3 contains a summary of the PFAS results for the 2020 WY.
- Figure 7-1 shows the locations of all wells sampled for the water quality monitoring program in the 2020 WY.
- Figure 7-2 shows graphs of historical and recent TDS concentrations in the eight Key Wells.
- Figure 7-3 through Figure 7-10 are iso-concentration maps of TDS, nitrate, boron, and total Cr for the Upper and Lower Aquifers, respectively.

• Figure 7-11 and Figure 7-12 show the PFOS concentration results in map view for the Upper and Lower Aquifers, respectively.

• Figure 7-13 through Figure 7-16 are groundwater hydro-chemographs showing timeseries trends of TDS, nitrate, and boron concentrations with respect to groundwater levels for select wells in each of the major subareas.

#### 7.2.2 Total Dissolved Solids

### 7.2.2.1 Upper Aquifer Zone

TDS concentrations in groundwater in the Upper Aquifer Zone are influenced by the volume, TDS concentration, and proximity of recharging waters; leaching of salts from subsurface sediments and bedrock; and vadose zone thickness. Over the last 40 years there has been a general upward trend in TDS concentrations, principally in the western portion of the Main Basin. Concentrations in the eastern and central portions of the valley have stayed relatively low, especially during times of significant stream recharge.

During the 2020 WY, the TDS concentrations in groundwater were lowest in the areas adjacent to the Arroyo Valle and the Arroyo Mocho, where they were generally less than 500 mg/L. There continues to be two main areas of the groundwater basin where TDS concentrations exceed 1,000 mg/L in the Upper Aquifer Zone (*Figure 7-3*):

- In the western portion of the Fringe Subarea and extending south into the northwestern
  portion of the Main Basin. This high TDS area is most likely due to the combination of the
  concentrating effects of urban irrigation, leaching of buried lacustrine and marine
  sediments, recharge of poorer quality water from Arroyo Las Positas, and legacy
  wastewater and sludge disposal practices in the Pleasanton and Livermore areas.
- In the northeastern portion of the Fringe Subarea. This high-TDS area is likely due to poorer quality water that runs off marine sediments on the east and north of the groundwater basin and recharges the Basin along the hill-fronts.

### 7.2.2.2 Lower Aquifer Zone

Water from the Lower Aquifer Zone is generally of good drinking water quality. The Basin Objective and minimum threshold of 500 mg/L is met in the central portion of the Main Basin. Around the margins of the Main Basin, TDS concentrations are slightly higher, generally ranging from 500 mg/L to 900 mg/L in the 2020 WY (see *Figure 7-4*). The distribution of TDS concentrations is likely caused by deep percolation of low-TDS surface waters in the central portion of the basin and municipal pumping in the western basin that pulls high-TDS groundwater laterally and downward from the North Fringe Subarea and the Upper Aquifer.

Many of the municipal supply wells in the Pleasanton area produced water with TDS concentrations greater than the minimum threshold of 500 mg/L during the 2020 WY. The highest concentrations were detected as follows:

- The Mocho wellfield had one well above 800 mg/L (854 mg/L in Mocho 4).
- One of the San Francisco Public Utilities Commission (SFPUC) wells in the Bernal wellfield (SF-A) detected TDS at 932 mg/L.
- A monitoring well (3S/1E 17B 4) located central to four active wellfields (Mocho, Hopyard, Bernal, and Busch Valley) had TDS at 902 mg/L.

The source of these high TDS concentrations is believed to be the Upper Aquifer Zone, which has had TDS concentrations as high as 2,000 mg/L in the same area directly above the Mocho well screened intervals. When the Mocho wells are pumped, a very large vertical gradient is created between the Upper and Lower Aquifer Zones, inducing flow between the two zones. The sealing of three onsite abandoned cross-zoned wells in 2013 does not appear to have slowed the rising TDS trend observed in the Mocho wellfield. Zone 7 can strip and export much of the salts from the water produced by the Mocho wells with its onsite groundwater demineralization facility (MGDP). See Section 13.4.2.3 for details on the Mocho Groundwater Demineralization Plant's (MGDP's) use in the 2020 WY. Other planned corrective actions and strategies are described in Section 5.3.3.2, Salt Management Strategy of the Alternative GSP. Additionally, Zone 7 plans to revisit the strategies and their effectiveness for the 5-year update to the Alternative GSP in 2022.

#### 7.2.3 Nitrates

#### 7.2.3.1 Upper Aquifer Zone

Zone 7's Nutrient Management Plan (NMP, Zone 7, 2015b) studied nitrate occurrences within the Livermore Groundwater Basin, as well as its nitrate loading and assimilative capacity. The NMP was approved by the RWQCB in 2016 and submitted as part of the Alternative GSP later that year. The complete NMP is also available on the Zone 7 website (<a href="www.Zone7Water.com">www.Zone7Water.com</a>).

The NMP identified ten local high nitrate Areas of Concern (AOC) where nitrate concentrations persist above the Basin Objective and minimum threshold (*Figure 7-5*). Also, the NMP commits Zone 7 to monitoring the conditions in these AOCs and promoting Best Management Practices (BMPs) that lead to reductions in nutrient loading. The following are the nitrate monitoring results for the ten AOCs during the 2020 WY (roughly from west to east).

 Happy Valley—Nitrate concentrations were not monitored in this Upland AOC in the 2020 WY; however, when studied in the 2013 WY by Zone 7 and ACDEH, the nitrate occurrences were found to be stable.

• **Bernal**—This AOC is based on nitrate concentrations from one well (3S/1E 22D 2) in the southern portion of the Upper Aquifer of the Amador West Subarea. The long-term trend of concentrations in this well has been slowly declining. In the 2020 WY, the concentration was just below the MCL of 10 mg/L at 9.58 mg/L (10.5 mg/L for the 2019 WY).

- Staples Ranch—This AOC is in the eastern portion of the Northern Fringe Subarea. It extends westward from monitoring well 3S/1E 2M 3 along the Main Basin boundary. In the 2020 WY, the nitrate concentration was detected above the threshold after dropping below in the 2019 WY (12.5 mg/L in 2020 WY compared to 4.25 mg/L in 2019 WY). A second area of elevated concentrations in this AOC existed historically to the west near Tassajara Creek; however, for the past few years, nitrate concentrations in this portion of the AOC have dropped below the minimum threshold (9.3 mg/L in 2020 WY and 9.07 mg/L in 2019 WY, both in 3S/1E 5K 6).
- **Constitution**—This AOC exists near the boundary of the Mocho II, Camp, and Amador Subareas, and is up-gradient from the Las Positas Golf Course in Livermore. Nitrate concentrations were detected above the MCL in 3S/1E 1H 3, at 15.7 mg/L during the 2020 WY which is consistent with the past few years (16.8 mg/L in 2019 WY).
- Jack London—This AOC extends from the eastern portion of the Mocho II Subarea to the
  northeastern portion of the Amador Subarea. Several wells in the Upper Aquifer have
  consistently had nitrate concentrations above the MCL. The highest nitrate concentration
  detected in this AOC during the 2020 WY was 13.2 mg/L in 3S/1E 12D 2 (compared to last
  year's highest concentration at 18.2 mg/L in the same well).
- May School—Historically, the nitrate concentration in this AOC has been characterized annually by the results of a single monitoring well (2S/2E 28D 2); however, the associated nitrate plume was further delineated by historical data from several domestic supply wells located in the Bel Roma neighborhood. Again, for the 2020 WY, only 2S/2E 28D 2 was sampled and had a concentration of 42 mg/L (versus 32.3 mg/L in the 2019 WY). Over the last six years the nitrate concentrations in the monitoring wells have varied between 16.7 mg/L and 42.8 mg/L.
- Charlotte Way—The high nitrate in this AOC exists in the western portion of the Mocho I Subarea and may be commingled with Buena Vista's nitrate plume in the eastern portion of the Mocho II Subarea. Elevated nitrate concentrations have been typically detected in three monitoring wells in this AOC. However in the 2020 WY, only one of the three wells sampled exceeded the minimum threshold; 13.8 mg/L in 3S/2E 3K 3, compared to 9.15 mg/L in 2019 WY. Nitrate concentrations were detected just below the minimum threshold in two other monitoring wells at 9.83 mg/L in 3S/2E 14A 3 (12 mg/L in the 2019 WY) and at 9.35 mg/L in 3S/2E 10F 3 (11 mg/L in the 2019 WY).
- **Buena Vista**—This nitrate plume is defined by several wells in the central and eastern portion of the Mocho II Subarea in both the Upper and Lower Aquifers. During the

2020 WY, the highest concentration was detected in the northeastern portion of the plume at 15.2 mg/L in 3S/2E 10Q 1 (16.6 mg/L in 2019 WY).

- Greenville—This AOC is situated primarily along Tesla Road, east of Vasco Road. It is routinely characterized by the results of a single monitoring well (3S/2E 24A 1); however, the associated nitrate plume was further delineated during a study conducted during the 2015 WY (Zone 7, 2016a). In the 2020 WY, 3S/2E 24A 1 had a concentration of 24.5 mg/L (25.4 mg/L in 2019 WY).
- Mines Road—This AOC is monitored by a single well (3S/2E 26J 2) located in the Upper Aquifer in the southern portion of the Main Basin along Mines Road. Nitrate concentrations in this well have fluctuated widely, ranging from non-detect to a maximum of 21.4 mg/L in October 2011. For the 2020 WY, the nitrate concentration in 3S/2E 26J 2 was below the MCL at 1.37 mg/L down from 3.67 mg/L in 2019 WY.

#### 7.2.3.2 Lower Aquifer Zone

In the Lower Aquifer, nitrate was only detected above the minimum threshold in the Buena Vista AOC during the 2020 WY (*Figure 7-6*).

• **Buena Vista**—The general location of this plume underlies the Buena Vista nitrate plume in the Upper Aquifer, suggesting that some of the nitrate in the Upper Aquifer has migrated into the Lower Aquifer. This plume also appears to have migrated towards, and possibly co-mingled with, the Jack London plume. In the 2020 WY, nitrate concentrations exceeded the minimum threshold in two monitoring wells (11.2 mg/L in 3S/2E 8H 3 and 10.8 mg/L in 3S/2E 16A 3). Four other wells, including two municipal supply wells located in the same AOC had nitrate concentrations that approached the minimum threshold (8.7 mg/L in CWS 10, 8.04 mg/L in CWS 9, 9.6 mg/L in 3S/2E 15E 2, and 9.35 mg/L in 3S/2E 5N 1). Overall, this Lower Aquifer nitrate plume has been relatively stable over the last five years.

#### **7.2.4** Boron

#### 7.2.4.1 Introduction

Boron is a naturally occurring element in the Livermore Valley Groundwater Basin; elevated concentrations likely are caused by natural processes affecting alkali/marine sediments (particularly prevalent in eastern watersheds). While there is no MCL for boron, the United States Environmental Protection Agency (USEPA) has identified a Health Reference Level (HRL) of 1,400 micrograms per liter ( $\mu$ g/L). Boron also becomes a problem for irrigated crops when present at levels above 1,000 or 2,000  $\mu$ g/L, depending on the crop sensitivity. Boron is a groundwater

parameter of interest for the valley's agriculture and golf communities because of its potential for impact on certain irrigated crops and turf. The minimum threshold was set at  $1,400 \mu g/L$ .

#### 7.2.4.2 Upper Aquifer Zone

Boron exists at elevated concentrations in the Upper Aquifer in the following areas of the groundwater basin (Figure 7-7):

- There is a plume of elevated boron concentrations that extends along the boundary between the North Fringe Subarea and the Main Basin. This localized concentration of boron has been relatively stable for many years. The highest concentration measured in the 2020 WY (12,000 μg/L) was found near the center of this area in 3S/1E 4J 5, compared to 9,880 μg/L in the 2019 WY.
- Elevated boron concentrations were also detected in parts of the Northeastern and Eastern Fringe Subareas. The highest concentration detected in these areas in the 2020 WY was detected at 29,000 μg/L in 2S/2E 27P 2, compared to 31,000 μg/L in the 2019 WY.

The source of boron is likely from natural alkali/marine sediments in the east, but this is unconfirmed. It should be noted that the boron detected in the western portion of the Basin primarily occurs along the Arroyo Las Positas and lower Arroyo Mocho. This occurrence of elevated boron may be from high-boron groundwater discharging into the Arroyo Las Positas in the eastern portion of the Valley and flowing downstream to the Arroyo Mocho, recharging groundwater along the way. The eastern portion of the Arroyo Las Positas has been a gaining stream and continuously flowing into the Arroyo Mocho since the 1981 WY.

### 7.2.4.3 Lower Aquifer Zone

In the 2020 WY, boron was detected above 1,400  $\mu$ g/L in the Lower Aquifer in the following areas of the groundwater basin (*Figure 7-8*):

- In municipal supply well Mocho 3, in Zone 7's Mocho Wellfield, at 1,410  $\mu$ g/L (compared to 1,810  $\mu$ g/L in the 2019 WY).
- In monitoring well 3S/2E 23E 2, in the southeastern portion of the Mocho II Subarea, at 2,610 µg/L (compared to 1,780 µg/L in the 2019 WY).

#### 7.2.5 Chromium

#### 7.2.5.1 Introduction

Chromium (Cr) is typically found at very low concentrations in groundwater in the Basin. It can be a naturally occurring element or an anthropogenic impact. Prior to August 2017, the Basin Objective and the minimum threshold in the Alternative GSP had been set at the MCL for hexavalent chromium (CrVI), which was 10  $\mu$ g/L. In August 2017, under orders of the Superior Court, the State Water Resources Control Board (SWRCB) withdrew the CrVI regulation from the California Code of Regulations (CCR). Until the SWRCB establishes a new MCL for CrVI, they have returned to using the more general total Cr MCL of 50  $\mu$ g/L to ensure public water systems are safe. Since all the minimum thresholds in the Alternative GSP have been set based on the State's drinking water standards, Zone 7 adjusted the minimum threshold for Cr to match the State's Cr MCL that is in effect; currently 50  $\mu$ g/L.

### 7.2.5.2 Upper Aquifer Zone

Cr concentrations exceeded the 50  $\mu$ g/L threshold in two Upper Aquifer monitoring wells during the 2020 WY sampling effort (*Figure 7-9*).

- Cr was detected at 94 µg/L in monitoring well 3S/2E 12C 4 which is located on the Lawrence Livermore National Laboratory (LLNL) site in the East Fringe Subarea. Samples from this well have typically exhibited high Cr values in the past (63 µg/L in the 2019 WY).
- Cr was detected at 108 μg/L in monitoring well 3S/1E 7G 7 located in the North Fringe Subarea just north of the Main Basin. This well has recently been non-detect for chromium; however, chromium was detected in this well at 140 μg/L during the 2009 WY.

#### 7.2.5.3 Lower Aquifer Zone

Cr was not detected above the MCL in any of the monitored Lower Aquifer wells. However, Cr was detected in several monitoring and production wells at greater than the former minimum threshold of 10  $\mu$ g/L as shown on *Figure 7-10*.

Because the locations of the slightly elevated Cr concentrations in the Lower Aquifer Zone do not coincide with those in the Upper Aquifer Zone, it is likely that the Cr in the Lower Aquifer Zone is not a result of vertical migration from the Upper Aquifer Zone. It may be the result of localized leaching of naturally occurring chromium-rich minerals in those portions of the Lower Aquifer Zone.

### 7.2.6 **PFAS**

#### 7.2.6.1 Introduction

Zone 7 began sampling for PFAS compounds in the 2019 WY. Based on the detections in some of the supply wells and the limited set of monitoring wells sampled, Zone 7 hired Jacobs Engineering, Inc. to conduct a PFAS Potential Source Investigation (*Jacobs, 2020*). The investigation, which concluded in December 2020, included recommendations for additional sampling of existing monitoring wells. Those wells will be incorporated into the 2021 WY sampling program. Jacob's PFAS Potential Source Investigation Report and other information on PFAS are located on the Zone 7 website: http://www.zone7water.com/pfas-information.

Table 7-3 shows the concentrations of all PFAS compounds detected in groundwater during the 2020 WY. Of those PFAS compounds detected, only perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorobutanesulfonic acid (PFBS) have any regulatory limits (see *Table 7-A*), and of those three compounds, PFOS had the highest concentrations relative to regulatory limits. Therefore, the two maps generated for this report (discussed below by aquifer) show PFOS concentrations (in ppt).

#### 7.2.6.2 Upper Aquifer Zone

Figure 7-11 shows PFOS concentrations in the upper aquifer. Monitoring wells previously sampled and presented in the 2019 WY Annual Report were not resampled in the 2020 WY; however, additional wells were sampled to help determine the extent of PFOS in the groundwater basin. The results from both water years are presented in Figure 7-11.

- While most of the wells sampled in the 2019 WY had PFOS detections, those
  concentrations that were above the EPA's 40 ppt screening level and above the DDW's 70
  ppt response level (RL) appear to be northeast of the mining area in the vicinity of the
  Jack London Boulevard. The highest concentration detected in the upper aquifer remains
  450 ppt in well 3S/1E 10A 2 sampled in the 2019 WY, which is just southeast of the airport.
- Two wells sampled in the 2020 WY (3S/2E 19D 7 and 19N 3) that were east of Isabel Avenue and south of Stanley Boulevard were both non-detect for PFOS.
- In the 2020 WY five wells were sampled north and east of the highest concentration area.
  These wells ranged from non-detect to 40 ppt (in well 3S/1E 4J 5). The PFOS detected in
  3S/1E 4J 5 does not appear to be connected to the plume southeast of the airport and
  may come from a separate source.

Zone 7 Water Agency 7 Groundwater Quality

### 7.2.6.3 Lower Aquifer Zone

Figure 7-12 shows PFOS concentrations in the lower aquifer wells that were sampled in either the 2019 or 2020 WYs. For wells that were sampled more than once, the map shows the highest PFOS concentrations detected. In nested well sets, the map shows the lower aquifer well with the highest PFOS concentration. The 2019 WY samples are labeled black with gray highlights in the map.

- Wells with concentrations above the EPA's 40 ppt screening level are within a roughly-triangular area that stretched from the southwestern edge of the airport (north of the mining area) to the City of Pleasanton's Wellfield (west of the mining area) and to Zone 7's Mocho Wellfield (northwest of the mining area).
- There were two areas where PFOS concentrations exceeded the DDW's RL (70 ppt):
  - The first extended west from the airport to Zone 7's Mocho Wellfield. This area included 3S/1E 10B 8, which had the highest concentration detected in the groundwater basin, at 1,400 ppt in the 2020 WY. Zone 7's Mocho 1 municipal well was the only municipal well in this area with PFOS concentrations above the RL at 110 ppt in the 2020 WY.
  - The second was at Pleasanton's Well 8 (Pleas 8 or P8), which had a maximum concentration of PFOS at 110 ppt in the 2020 WY. During the 2019 WY the PFOS concentrations ranged from 68 to 120 ppt. This area of elevated PFOS concentration appears to be relatively isolated as evidenced by several wells with concentrations below the RL both north (roughly up-gradient) and west (downgradient) of Pleas 8.
- Eight of Zone 7's municipal wells have tested above the Notification Level (NL) for PFOS (6.5 ppt) in the 2020 WY, but only one of the municipal wells, Mocho 1 (i.e., 3S/1E 9M 2), had PFOS concentrations (110 ppt) that exceeded DDW's recommended RL of 70 ppt. Four of Zone 7's wells also tested above the NL for PFOA (5.1 ppt). Although additional PFAS compounds were also detected in Zone 7's water supplies, at present there are no regulatory guidelines for these contaminants.
- PFOS was detected in five of six CWS wells sampled in the 2020 WY. None of the wells had concentrations above the RL (70ppt).

Zone 7 continues to monitor and characterize PFAS in the Basin. For the 2021 WY, Zone 7 plans to add new sampling sites based on the recommendations of Jacob's PFAS Potential Source Investigation to further characterize the extent and potential sources of PFAS.



### TABLE 7-1 GROUNDWATER QUALITY PROGRAM TABLE OF PROGRAM WELLS WITH SAMPLING FREQUENCY 2020 WATER YEAR

| SITE INFOR | PMATION                      |          |    | Sampling  |    | Other P | rograms     |             |
|------------|------------------------------|----------|----|-----------|----|---------|-------------|-------------|
| State Name | Well Name                    | Subbasin | Aq | Frequency | WR | Muni    | <b>PFAS</b> | <b>WWRW</b> |
| 2S1E32E001 | End of Arnold Rd             | None     | U  | 1         |    |         |             |             |
| 2S1E32N001 | Camp Parks                   | Camp     | U  | 1         |    |         |             |             |
| 2S1E32Q001 | Summer Glen Dr               | Camp     | U  | 1         |    |         |             |             |
| 2S1E33L001 | Gleason Dr @ Tassajara       | None     | U  | 1         |    |         |             |             |
| 2S1E33P002 | Central Pkwy at Emerald Glen | Camp     | U  | 1         |    |         |             |             |
| 2S1E33R001 | Central Pkwy @ Grafton       | None     | U  | 1         |    |         |             |             |
|            | BOLLINGER                    | Bishop   | U  | 1         |    |         |             |             |
| 2S1W26C002 | PINE VALLEY                  | Dublin   | U  | 1         |    |         |             |             |
| 2S1W36E003 | Kolb Park                    | Dublin   | U  | 1         |    |         |             |             |
| 2S1W36F001 | Dublin High shallow          | Dublin   | L  | 1         |    |         |             |             |
| 2S1W36F002 | Dublin High mid              | Dublin   | L  | 1         |    |         |             |             |
| 2S2E27P002 | hartford ave east            | Spring   | U  | 1         |    |         |             |             |
| 2S2E28D002 | May School                   | May      | U  | 1         |    |         |             |             |
| 2S2E28J002 | FCC Well                     | May      | L  | 1         |    |         |             |             |
| 2S2E28Q001 | hartford ave                 | May      | U  | 1         |    |         |             |             |
| 2S2E32K002 | jenson's N liv. Ave          | Cayetano | U  | 1         |    |         |             |             |
|            | Mud City                     | May      | U  | 1         |    |         |             |             |
| 2S2E34Q002 | Hollyhock & Crocus           | Spring   | U  | 1         |    |         |             |             |
|            | Constitution Dr              | Camp     | U  | 1         |    |         |             |             |
| 3S1E01H003 | Collier Canyon g1            | Camp     | U  | 4         |    |         |             |             |
|            | Collier Vineyards            | Camp     | L  | 1         |    |         |             |             |
|            | Kitty Hawk                   | Camp     | U  | 1         |    |         |             |             |
|            | Airport gas g5               | Amador   | U  | 1         |    |         |             |             |
| 3S1E01P003 | New airport well             | Amador   | L  | 4         |    |         |             |             |
| 3S1E02J002 | Maint. Bldg                  | Camp     | U  | 1         |    |         |             |             |
| 3S1E02J003 | Doolan Rd East               | Camp     | U  | 1         |    |         |             |             |
| 3S1E02K002 | Doolan Rd West               | Camp     | U  | 1         |    |         |             |             |
| 3S1E02M003 | Friesman Rd North            | Camp     | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E02N006 | Friesman Rd South            | Amador   | U  | 1         |    |         |             |             |
| 3S1E02P003 | Crosswinds Church            | Camp     | L  | 1         |    |         |             |             |
| 3S1E02Q001 | LPGC #1                      | Amador   | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E02R001 | Beebs                        | Amador   | U  | 4         |    |         |             |             |
| 3S1E03G002 | fallon rd                    | Camp     | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E04A001 | SMP-DUB-2                    | Camp     | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E04J005 | Pimlico shallow              | Camp     | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E04J006 | Pimlico deep                 | Camp     | U  | 1         |    |         | <b>V</b>    |             |
| 3S1E04Q002 | gulfstream                   | Amador   | U  | 1         |    |         | <b>V</b>    |             |
|            | Rosewood shallow             | Camp     | U  | 1         |    |         |             |             |
| 3S1E05K007 | Rosewood deep                | Camp     | L  | 1         |    |         |             |             |
| 3S1E05L003 | Oracle                       | Camp     | U  | 1         |    |         |             | +           |
| 3S1E05P006 | Owens Park                   | Camp     | U  | 1         |    |         |             |             |
| 3S1E06F003 | Dublin Ct                    | Dublin   | U  | 1         |    |         |             |             |
| 3S1E06N002 | DSRSD MW-3                   | Dublin   | U  | 1         |    |         | <u> </u>    | 1           |
|            | DSRSD MW-4                   | Dublin   | U  | 1         |    |         | <u> </u>    |             |

Aq = Aquifer: U = Upper; L = Lower; D = Deep Frequency: Q = Quarterly; SA = SemiAnnually; A = Annually
OTHER: WR = Water Rights; Muni = Municipal wells; PFAS = Sampled for PFAS Compounds; WWRW = Wastewater and Recycled Water

| SITE INFO                | RMATION                                |                  |    | Sampling  |    | Other P  | rograms     |             |
|--------------------------|----------------------------------------|------------------|----|-----------|----|----------|-------------|-------------|
| State Name               | Well Name                              | Subbasin         | Aq | Frequency | WR | Muni     | <b>PFAS</b> | <b>WWRW</b> |
| 3S1E06N006               | DSRSD NE-76                            | Dublin           | U  | 1         |    |          |             |             |
| 3S1E07B002               | Hopyard rd                             | Dublin           | L  | 1         |    |          |             |             |
| 3S1E07B012               | Hacienda Arch                          | Dublin           | U  | 1         |    |          |             |             |
| 3S1E07D001               | DSRSD SW-75                            | Dublin           | U  | 1         |    |          |             |             |
| 3S1E07D003               | DSRSD SE-70                            | Dublin           | U  | 1         |    |          |             |             |
| 3S1E07G007               | Chabot Well                            | Dublin           | U  | 1         |    |          |             |             |
| 3S1E07J005               | Thomas Hart School                     | Dublin           | U  | 1         |    |          |             |             |
| 3S1E08B001               | Lizard Well                            | Amador           | U  | 1         |    |          |             |             |
| 3S1E08G004               | Apache                                 | Amador           | U  | 1         |    |          |             |             |
| 3S1E08H009               | Mocho 4 Nested Shallow                 | Amador           | L  | 1         |    |          |             |             |
| 3S1E08H010               | Mocho 4 Nested Middle                  | Amador           | L  | 1         |    |          |             |             |
| 3S1E08H011               | Mocho 4 Nested deep                    | Amador           | D  | 1         |    |          |             |             |
| 3S1E08H013               | Mocho 3 mon                            | Amador           | D  | 1         |    |          |             |             |
| 3S1E08H018               | Mocho 4                                | Amador           | L  | 4         |    | <b>√</b> | √           |             |
| 3S1E08K001               | Cockroach well                         | Amador           | U  | 1         |    | ,        | '           |             |
| 3S1E08N001               | sports park                            | Bernal           | U  | 1         |    |          |             |             |
| 3S1E09B001               | Stoneridge                             | Amador           | L  | 4         |    | V        |             |             |
| 3S1E09J007               | SW Lake I Shallow                      | Amador           | U  | 1         |    | ,        |             |             |
| 3S1E09J008               | SW Lake I Middle                       | Amador           | L  | 1         |    |          |             |             |
| 3S1E09J009               | SW Lake I Deep                         | Amador           | L  | 1         |    |          |             |             |
| 3S1E093009<br>3S1E09M002 | Mocho 1                                | Amador           | L  | 4         |    | √        | √           |             |
| 3S1E09M002               | Mocho 2                                | Amador           | L  | 4         |    | \ \ \    | √ √         |             |
| 3S1E09M003               | Mocho 3                                | Amador           | L  | 4         |    | V √      | √ √         |             |
|                          |                                        |                  | U  |           |    | V        | V           |             |
| 3S1E09P005<br>3S1E09P009 | Key_AmW_U (Mohr Key)  Mohr Ave Shallow | Amador<br>Amador |    | 1         |    |          |             |             |
|                          |                                        |                  | L  |           |    |          |             |             |
| 3S1E09P010               | Key_AmW_L                              | Amador           | L  | 1         |    |          |             |             |
| 3S1E09P011               | Mohr Ave Deep                          | Amador           | L  | 1         |    |          | -1          |             |
| 3S1E10A002               | El C harro Rd                          | Amador           | U  | 1         |    |          | √<br>√      |             |
| 3S1E10B008               | Kaiser Rd Shallow                      | Amador           | L  | 1         |    |          | ,           |             |
| 3S1E10B009               | Kaiser Rd Middle 1                     | Amador           | L  | 1         |    |          | √<br>       |             |
| 3S1E10B010               | Kaiser Rd Middle 2                     | Amador           | L  | 1         |    |          | √<br>       |             |
| 3S1E10B011               | Kaiser Rd Deep                         | Amador           | D  | 1         |    |          | √           |             |
| 3S1E10B014               | COL 5 Monitoring                       | Amador           | L  | 1         |    | 1        | 1           |             |
| 3S1E10B016               | COL 5                                  | Amador           | L  | 4         |    | <b>√</b> | √<br>       |             |
| 3S1E10D002               | Stoneridge Shallow                     | Amador           | L  | 1         |    |          | √           |             |
| 3S1E10D003               | Stoneridge Middle 1                    | Amador           | L  | 1         |    |          | √           |             |
| 3S1E10D004               | Stoneridge Middle 2                    | Amador           | L  | 1         |    |          | √           |             |
| 3S1E10D005               | Stoneridge Deep                        | Amador           | D  | 1         |    |          | √           |             |
| 3S1E10K002               | COL 1 Monitoring                       | Amador           | L  | 1         |    | 1        | 1           |             |
| 3S1E10K003               | COL 1                                  | Amador           | L  | 4         |    | √        | √           |             |
| 3S1E11B001               | Airport West                           | Amador           | U  | 4         |    |          | ,           |             |
| 3S1E11C003               | LAVWMA ROW                             | Amador           | U  | 1         |    |          | <b>√</b>    |             |
| 3S1E11G001               | Key_AmE_U                              | Amador           | U  | 1         |    |          | √           |             |
| 3S1E11G002               | Rancho Charro Middle 1                 | Amador           | L  | 1         |    |          | √           |             |
| 3S1E11G003               | Rancho Charro Middle 2                 | Amador           | L  | 1         |    |          | √           |             |
| 3S1E11G004               | Rancho Charro Deep                     | Amador           | D  | 1         |    |          | √           |             |
| 3S1E11M002               | COL 2 Monitoring                       | Amador           | L  | 1         |    |          |             |             |
| 3S1E11M003               | COL 2                                  | Amador           | L  | 4         |    | V        | √           |             |
| 3S1E11P006               | New Jamieson Residence                 | Amador           | L  | 1         |    |          |             |             |
| 3S1E12A002               | Airport South                          | Amador           | U  | 4         |    |          | √           |             |
| 3S1E12D002               | LWRP G6                                | Amador           | U  | 4         |    |          | √           |             |

Aq = Aquifer: U = Upper; L = Lower; D = Deep Frequency: Q = Quarterly; SA = SemiAnnually; A = Annually

| SITE INFO  | RMATION                                        |          |        | Sampling  |    | Other P  | rograms     |             |
|------------|------------------------------------------------|----------|--------|-----------|----|----------|-------------|-------------|
| State Name | Well Name                                      | Subbasin | Aq     | Frequency | WR | Muni     | <b>PFAS</b> | <b>WWRW</b> |
| 3S1E12G001 | Oaks Park Shallow                              | Amador   | U      | 4         |    |          | V           |             |
| 3S1E12H004 | LWRP Shallow                                   | Amador   | L      | 1         |    |          | V           |             |
| 3S1E12H005 | LWRP Middle 1                                  | Amador   | L      | 1         |    |          | V           |             |
| 3S1E12H006 | LWRP Middle 2                                  | Amador   | L      | 1         |    |          | V           |             |
| 3S1E12H007 | LWRP Deep                                      | Amador   | D      | 1         |    |          | V           |             |
| 3S1E12K002 | Oaks Park Mid                                  | Amador   | L      | 1         |    |          | V           |             |
| 3S1E12K003 | Key_AmE_L                                      | Amador   | L      | 1         |    |          | V           |             |
| 3S1E12K004 | Oaks Park Deep                                 | Amador   | D      | 1         |    |          | V           |             |
| 3S1E13P005 | LGA Grant Nested 1                             | Amador   | U      | 1         |    |          |             |             |
| 3S1E13P006 | LGA Grant Nested 2                             | Amador   | L      | 1         |    |          |             |             |
| 3S1E13P007 | LGA Grant Nested 3                             | Amador   | L      | 1         |    |          |             |             |
| 3S1E13P008 | LGA Grant Nested 4                             | Amador   | L      | 1         |    |          |             |             |
| 3S1E14B001 | Industrial Asphalt                             | Amador   | L      | 1         |    |          |             |             |
| 3S1E14D002 | South Cope Lake                                | Amador   | L      | 1         |    |          |             |             |
| 3S1E15J003 | shadow cliff                                   | Amador   | L      | 1         |    |          |             |             |
| 3S1E15M003 | Bush/Valley South                              | Amador   | L      | 1         |    |          |             |             |
| 3S1E16A002 | Pleas 8                                        | Amador   | L      | 1         |    | <b>√</b> | <b>√</b>    |             |
| 3S1E16A004 | Bush/Valley Mid                                | Amador   | L      | 1         |    | ,        | \<br>√      |             |
| 3S1E16B001 | Bush/Valley North                              | Amador   | D      | 1         |    |          | ,           |             |
| 3S1E16C002 | Santa Rita Valley Shallow                      | Amador   | L      | 1         |    |          | <b>√</b>    |             |
| 3S1E16C003 | Santa Rita Valley Middle                       | Amador   | L      | 1         |    |          | <b>√</b>    |             |
| 3S1E16C003 | Santa Rita Valley Deep                         | Amador   | L      | 1         |    |          | <b>√</b>    |             |
| 3S1E16E004 | black ave - cultural                           | Amador   | U      | 1         |    |          | <b>'</b>    |             |
| 3S1E16L005 | Pleas 5                                        | Amador   | L      | 1         |    | √        | <b>√</b>    |             |
| 3S1E16L003 | Pleas 6                                        | Amador   | L      | 1         |    | \ \ \    | <b>√</b>    |             |
| 3S1E16E007 | Vervais Monitor                                | Amador   | U      | 2         | √  | V        | V           |             |
| 3S1E10F003 |                                                | Amador   | L      | 1         | ٧  |          |             |             |
|            | Casterson                                      |          |        |           |    |          |             |             |
| 3S1E17D003 | Hopyard Nested Shallow Hopyard Nested Middle 1 | Bernal   | L<br>L | 1         |    |          |             |             |
| 3S1E17D004 | Hopyard Nested Middle 2                        |          |        |           |    |          |             |             |
| 3S1E17D005 | 17                                             | Bernal   | L      | 1         |    |          |             |             |
| 3S1E17D006 | Hopyard Nested Middle 3                        | Bernal   | L      | 1         |    |          |             |             |
| 3S1E17D007 | Hopyard Nested Deep                            | Bernal   | D      | 1         |    |          |             |             |
| 3S1E17D011 | Hopyard 9 Monitoring Well                      | Bernal   | L      | 4         |    | √        |             |             |
| 3S1E17D012 | Hopyard 9                                      | Bernal   | L      |           |    | √<br>√   |             |             |
| 3S1E18A006 | Hopyard 6                                      | Bernal   | L      | 4         |    | V        | .1          |             |
| 3S1E18E004 | Valley Trails II                               | Bernal   | U      | 1         |    |          | √<br>√      |             |
| 3S1E18J002 | camino segura                                  | Bernal   | U      | 1         |    | .1       | ٧           |             |
| 3S1E19A010 | SFWD South (B)                                 | Bernal   | L      | 1         |    | √<br>    |             |             |
| 3S1E19A011 | SFWD North (A)                                 | Bernal   | L      | 1         |    | √        | 1           |             |
| 3S1E19C004 | del valle & laguna                             | Bernal   | U      | 1         |    |          | √           |             |
| 3S1E19K001 | 680/bernal                                     | Bernal   | U      | 1         |    |          |             |             |
| 3S1E20B002 | Fairgrounds Potable                            | Bernal   | L      | 1         |    |          |             |             |
| 3S1E20C003 | Fairgrounds Potable Backup                     | Bernal   | L      | 1         | 1  |          |             |             |
| 3S1E20C007 | Key_Bern_U                                     | Bernal   | U      | 2         | √  |          |             |             |
| 3S1E20C008 | Key_Bern_L                                     | Bernal   | L      | 1         |    |          |             |             |
| 3S1E20C009 | Fair Nested Deep                               | Bernal   | L      | 1         |    |          |             |             |
| 3S1E20J004 | civic center                                   | Bernal   | U      | 1         |    |          |             |             |
| 3S1E20M011 | S.F "M"LINE                                    | Bernal   | U      | 1         |    |          |             |             |
| 3S1E20Q002 | 20Q2                                           | Bernal   | U      | 1         |    |          |             |             |
| 3S1E22D002 | vineyard trailer                               | Amador   | U      | 1         |    |          |             |             |
| 3S1E23J001 | 1627 vineyard trailer                          | Amador   | L      | 1         |    |          |             |             |

 $\label{eq:Aq=Aquifer: U = Upper; L = Lower; D = Deep} \\ \mbox{Frequency: Q = Quarterly; SA = SemiAnnually; A = Annually}$ 

| SITE INFOR               | RMATION                      |          |    | Sampling  |    | Other P | rograms     |             |
|--------------------------|------------------------------|----------|----|-----------|----|---------|-------------|-------------|
| State Name               | Well Name                    | Subbasin | Aq | Frequency | WR | Muni    | <b>PFAS</b> | <b>WWRW</b> |
| 3S1E25C003               | Katz Winery Mansion          | Amador   | U  | 1         |    |         |             |             |
| 3S1E29M004               | f.c. channel                 | Castle   | U  | 1         |    |         |             |             |
| 3S1E29P002               | castlewood dr                | Bernal   | U  | 1         |    |         |             |             |
| 3S1W01B009               | DSRSD Shallow                | Dublin   | L  | 1         |    |         |             |             |
| 3S1W01B010               | DSRSD Middle                 | Dublin   | L  | 1         |    |         |             |             |
| 3S1W01B011               | DSRSD Deep                   | Dublin   | L  | 1         |    |         |             |             |
| 3S1W01J001               | DSRSD MW-1                   | Dublin   | U  | 1         |    |         |             |             |
| 3S1W02A002               | McNamara's                   | Dublin   | U  | 1         |    |         |             |             |
| 3S1W12A009               | DSRSD NW-75                  | Dublin   | U  | 1         |    |         |             |             |
| 3S1W12B002               | Stoneridge Mall Rd           | Dublin   | U  | 1         |    |         |             |             |
| 3S1W12J001               | DSRSD South                  | Dublin   | U  | 1         |    |         |             |             |
| 3S1W13J001               | muirwood dr                  | Castle   | U  | 1         |    |         |             |             |
| 3S2E01F002               | Brisa at Circuit City        | Spring   | U  | 1         |    |         |             |             |
| 3S2E02B002               | south front rd               | Spring   | U  | 1         |    |         |             |             |
| 3S2E03A001               | Bluebell                     | Spring   | U  | 1         |    |         |             |             |
| 3S2E03K003               | first & S. front rd          | Mocho I  | U  | 1         |    |         |             |             |
| 3S2E05N001               | Spider Well                  | Mocho II | M  | 1         |    |         |             |             |
| 3S2E07C002               | jaws - york way - G4         | Mocho II | U  | 4         |    |         |             |             |
| 3S2E07C002<br>3S2E07H002 | dakota                       | Mocho II | U  | 1         |    |         |             |             |
| 3S2E07N002               |                              | Amador   | U  | 1         |    |         |             |             |
|                          | Isabel & Arroyo Mocho CWS 24 |          |    | 1         |    | √       | √           |             |
| 3S2E07P003               | CWS 24                       | Amador   | L  |           |    | \<br>√  | √ √         |             |
| 3S2E07R003               |                              | Upland   | L  | 1         |    | \<br>√  | ٧           |             |
| 3S2E08F001               | CWS 10                       | Mocho II | L  | 1         |    | √<br>√  | .1          |             |
| 3S2E08G001               | CWS 19                       | Mocho II | L  | 1         |    | ٧       | √           |             |
| 3S2E08H002               | North k                      | Mocho II | U  | 1         |    |         |             |             |
| 3S2E08H003               | Key_Mo2_L                    | Mocho II | L  | 1         |    |         |             |             |
| 3S2E08H004               | N Liv Ave Deep               | Mocho II | L  | 1         |    |         |             |             |
| 3S2E08K002               | Key_Mo2_U (Livermore Key)    | Mocho II | U  | 1         |    | 1       | 1           |             |
| 3S2E08N002               | CWS 14                       | Mocho II | L  | 1         |    | √       | √           |             |
| 3S2E08Q009               | D-2                          | Mocho II | L  | 1         |    | 1       | 1           |             |
| 3S2E09Q001               | CWS 9                        | Mocho II | L  | 1         |    | √       | √           |             |
| 3S2E09Q004               | school st                    | Mocho II | U  | 1         |    |         |             |             |
| 3S2E10F003               | hexcel                       | Mocho I  | U  | 1         |    | •       |             |             |
| 3S2E10Q001               | almond                       | Mocho II | U  | 1         |    |         |             |             |
| 3S2E10Q002               | LLNL W-703                   | Mocho II | L  | 1         |    |         |             |             |
| 3S2E11C001               | joan way                     | Mocho I  | U  | 1         |    |         |             |             |
| 3S2E12C004               | LLNL W-486                   | Spring   | U  | 1         |    |         |             |             |
| 3S2E12J003               | LLNL W-017A                  | Spring   | L  | 1         |    |         |             |             |
| 3S2E14A003               | S. vasco @east ave           | Mocho I  | U  | 1         |    |         |             |             |
| 3S2E14B001               | 5763 east ave                | Mocho I  | L  | 1         |    |         |             |             |
| 3S2E15E002               | Retzlaff Winery              | Mocho II | L  | 1         |    |         |             |             |
| 3S2E15L001               | Concannon 2                  | Mocho II | U  | 1         |    |         |             |             |
| 3S2E15M002               | Concannon 1                  | Mocho II | U  | 1         |    |         |             |             |
| 3S2E15R017               | Buena Vista Shallow          | Mocho II | U  | 1         |    |         |             |             |
| 3S2E15R018               | Buena Vista Deep             | Mocho II | L  | 1         |    |         |             |             |
| 3S2E16A003               | Memory Gardens               | Mocho II | L  | 1         |    |         |             |             |
| 3S2E16C001               | CWS 15                       | Mocho II | L  | 1         |    | √       |             |             |
| 3S2E16E004               | pepper tree                  | Mocho II | U  | 1         |    |         |             |             |
| 3S2E17E002               | Mocho Street                 | Mocho II | U  | 1         |    |         |             |             |
| 3S2E18B001               | CWS 20                       | Amador   | L  | 1         |    | V       | <b>V</b>    |             |
|                          |                              | Amador   | U  | 1         |    | 1       |             | 1           |

 $\begin{tabular}{ll} Aq = Aquifer: U = Upper; L = Lower; D = Deep \\ \begin{tabular}{ll} Frequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Aq = Aquifer: U = Upper; L = Lower; D = Deep \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; SA = SemiAnnually; A = Annually \\ \begin{tabular}{ll} Prequency: Q = Quarterly; A = Quarterly;$ 

| SITE INFO   | RMATION                |          |    | Sampling  |              | Other P | rograms     |      |
|-------------|------------------------|----------|----|-----------|--------------|---------|-------------|------|
| State Name  | Well Name              | Subbasin | Aq | Frequency | <b>WR</b>    | Muni    | <b>PFAS</b> | WWRW |
| 3S2E19D007  | Isabel Shallow         | Amador   | U  | 1         |              |         | <b>V</b>    |      |
| 3S2E19D008  | Isabel Middle 1        | Amador   | L  | 1         |              |         | √           |      |
| 3S2E19D009  | Isabel Middle 2        | Amador   | L  | 1         |              |         | √           |      |
| 3S2E19D010  | Isabel Deep            | Amador   | L  | 1         |              |         | √           |      |
| 3S2E19N003  | Shallow Cemex Nested   | Amador   | U  | 1         |              |         | √           |      |
| 3S2E19N004  | Deep Cemex Nested      | Amador   | L  | 1         |              |         | √           |      |
| 3S2E20M001  | Alden Lane             | Amador   | L  | 1         |              |         |             |      |
| 3S2E22B001  | grapes                 | Mocho II | U  | 1         |              |         |             |      |
| 3S2E23E001  | Mines Nested Shallow   | Mocho II | U  | 1         |              |         |             |      |
| 3S2E23E002  | Mines Nested Deep      | Mocho II | L  | 1         |              |         |             |      |
| 3S2E24A001  | S. greenville          | Mocho I  | U  | 1         |              |         |             |      |
| 3S2E26J002  | mines rd               | Mocho II | U  | 1         |              |         |             |      |
| 3S2E29F004  | usgs wetmore           | Amador   | U  | 2         | $\checkmark$ |         |             |      |
| 3S2E30C001  | Vineyard 30C 1         | Amador   | L  | 1         |              |         |             |      |
| 3S2E30D002  | vineyard               | Amador   | U  | 1         |              |         |             |      |
| 3S2E32E007  | DVWTP 32E7             | Upland   | U  | 1         |              |         |             |      |
| 3S2E33G001  | Crohare                | Amador   | U  | 2         | V            |         |             |      |
| 3S2E33K001  | VA                     | Amador   | U  | 4         |              |         |             | √    |
| 3S2E33L001  | VA/CROHARE FENCE       | Amador   | U  | 4         |              |         |             | √    |
| 3S3E06Q003  | PPWTP South Monitoring | Altamont | U  | 1         |              |         |             |      |
| 3S3E07D002  | 7D 2                   | Spring   | U  | 1         |              |         |             |      |
| Totals: 218 |                        |          |    | 282       | 8            | 36      | 60          | 8    |

Aq = Aquifer: U = Upper; L = Lower; D = Deep Frequency: Q = Quarterly; SA = SemiAnnually; A = Annually



|                          |          |       | TEMP   | EC       |      |     |          | Min      | eral C | onstitu    | ents (m  | a/L)       |       |      |       | Select M | letals (ug/L | 1     | TDS   | Hard |
|--------------------------|----------|-------|--------|----------|------|-----|----------|----------|--------|------------|----------|------------|-------|------|-------|----------|--------------|-------|-------|------|
| SITE ID                  | DATE     | Ву    | °C     | umhos/cm | На   | Ca  | Mg       | Na       | K      | нсоз       | SO4      | g,∟,<br>Cl | NO3N  | SiO2 | В     | As       | Fe           | Cr    | mg/L  | mg/L |
| 2S1E32E001               | 5/27/20  | ZONE7 | 22.1   | 1312     | 7    | 127 | 30       | 117      | 1.5    | 599        | 29       | 114        | 8.65  | 42.8 | < 100 | 3.1      | < 100        | 1.5   | 795   | 442  |
| 2S1E32E001<br>2S1E32N001 | 5/27/20  | ZONE7 | 21.4   | 1071     | 7.4  | 85  | 21       | 114      | 1.9    | 363        | 36       | 138        | 2.29  | 32.1 | 460   | 1.9      | < 100        | 5.1   | 617   | 299  |
| 2S1E32N001               | 5/27/20  | ZONE7 | 22     | 2148     | 6.9  | 165 | 68       | 201      | 2.7    | 632        | 91       | 369        | 5.72  | 32.1 | 770   | < 2      | < 200        | 4.2   | 1265  | 692  |
| 2S1E32Q001<br>2S1E33L001 | 3/5/20   | ZONE7 | -      | 1332     | 7.1  | 105 | 28       | 153      | 1.4    | 513        | 43       | 163        | 4.9   | 30   | 420   | 2.4      | < 100        | 7     | 798   | 377  |
|                          | 3/5/20   | ZONE7 |        | 2845     | 7.1  | 248 |          |          | 2.2    |            |          | 597        | 6.85  | 30   |       |          | < 500        |       | 1796  | 996  |
| 2S1E33P002<br>2S1E33R001 | 3/5/20   | ZONE7 | ,      | 731      | 7.1  |     | 91       | 311      | 3.6    | 864<br>259 | 60       |            | 4     | 30   | 960   | < 5      | < 100        | 21    | 448   |      |
|                          | 9/7/20   | ZONE7 | - 22.5 | 1474     | 6.8  | 64  | 13<br>62 | 82<br>92 | 1.3    |            | 23<br>37 | 87<br>155  | < 0.1 | 21.4 | 110   | 2.7      | 198          | 21    | 872   | 214  |
| 2S1W15F001               |          |       | 22.5   |          |      | 156 |          | -        |        | 706        | -        | 155        |       |      | 210   | 1.9      |              | <1    |       | 645  |
| 2S1W26C002               | 5/27/20  | ZONE7 | 19.8   | 819      | 6.8  | 96  | 19       | 48       | 1      | 404        | 36       | 36         | 5.64  | 30   | 140   | 2.8      | < 100        | 2.4   | 490   | 318  |
| 2S1W36E003               | 5/27/20  | ZONE7 | 20.6   | 1036     | 7    | 126 | 27       | 61       | < 1    | 400        | 99       | 74         | 3.76  | 40.7 | < 200 | 7.7      | 258          | 2.2   | 641   | 426  |
| 2S1W36F001               | 5/12/20  | ZONE7 | 19.8   | 758      | 7.7  | 66  | 19       | 87       | 1.2    | 421        | 17       | 42         | < 0.1 | 21.4 | 270   | 10       | < 100        | < 1   | 461   | 244  |
| 2S1W36F002               | 5/12/20  | ZONE7 | 20.7   | 873      | 7.7  | 42  | 14       | 136      | 0.8    | 402        | < 1      | 98         | < 0.1 | 23.5 | 590   | 142      | 141          | < 1   | 513   | 161  |
| 2S2E27P002               | 6/24/20  | ZONE7 | 28.7   | 4504     | 7.7  | 72  | 47       | 769      | 2.9    | 211        | < 1      | 1492       | < 0.1 | 25.7 | 29000 | < 5      | < 500        | < 5   | 2513  | 375  |
| 2S2E28D002               | 6/24/20  | ZONE7 | 29     | 1539     | 7.4  | 72  | 39       | 172      | 2.6    | 253        | 43       | 280        | 42    | 32.1 | 800   | 5.3      | < 200        | 27    | 952   | 341  |
| 2S2E28J002               | 6/25/20  | ZONE7 | 19.6   | 956      | 8.3  | 4   | 4        | 247      | 0.7    | 382        | 61       | 87         | < 0.1 | 18.6 | 1600  | < 1      | < 100        | < 1   | 616   | 26   |
| 2S2E28Q001               | 6/24/20  | ZONE7 | 33.1   | 1217     | 7.8  | 36  | 32       | 166      | 1.1    | 371        | 98       | 152        | 1.36  | 42.8 | 720   | 12       | 1620         | 26    | 719   | 222  |
| 2S2E32K002               | 6/24/20  | ZONE7 | 31.4   | 942      | 7.6  | 37  | 31       | 124      | 1.9    | 327        | 57       | 126        | 2.36  | 36.4 | 500   | 5.4      | < 100        | 11    | 585   | 220  |
| 2S2E34E001               | 6/25/20  | ZONE7 | 29.9   | 1167     | 8.1  | 8   | 10       | 275      | 0.7    | 380        | 72       | 147        | < 0.1 | 25.7 | 3000  | 26       | < 100        | < 1   | 728   | 60   |
| 2S2E34Q002               | 6/25/20  | ZONE7 | 33.7   | 1793     | 7.7  | 63  | 67       | 192      | 1.2    | 269        | 139      | 374        | 0.99  | 30   | 3400  | 8.4      | < 200        | < 2   | 1004  | 432  |
| 3S1E01F002               | 6/24/20  | ZONE7 | 26.3   | 1375     | 7.1  | 105 | 39       | 122      | 8.0    | 554        | 26       | 161        | 6.44  | 49.2 | 260   | 5.8      | < 100        | 3.4   | 804   | 423  |
| 3S1E01H003               | 11/12/19 | LWRP  | -      | 1840     | -    | 71  | 38       | 240      | 1.4    | -          | 77       | 340        | 15.2  | 32   | 1230. | -        | -            | -     | 1100  | -    |
| 3S1E01H003               | 2/11/20  | LWRP  | -      | 1860     | -    | 67  | 42       | 250      | 1.4    | -          | 74       | 341        | 15.7  | 33   | 1260. | -        | -            | -     | 1110  | -    |
| 3S1E01H003               | 9/20/20  | LWRP  | -      | 1860     | -    | 72  | 43       | 270      | 1.5    | -          | 75       | 313        | 15    | 34   | 1380. | -        | -            | -     | 1100  | -    |
| 3S1E01L001               | 6/25/20  | ZONE7 | 27.4   | 1730     | 7.2  | 74  | 43       | 216      | 1.6    | 557        | 52       | 236        | 17.6  | 32.1 | 3400  | < 1      | < 100        | 6.5   | 1007  | 362  |
| 3S1E01P002               | 11/12/19 | LWRP  | -      | 1460     | -    | 73  | 43       | 160      | 2.2    | -          | 81       | 264        | 0.5   | 22   | 3280. | -        | -            | -     | 860   | -    |
| 3S1E01P002               | 2/11/20  | LWRP  | -      | 1450     | -    | 62  | 43       | 160      | 1.7    | -          | 79       | 287        | 0.5   | 22   | 2480. | -        | -            | -     | 840   | -    |
| 3S1E01P002               | 9/20/20  | LWRP  | -      | 1450     | -    | 73  | 49       | 170      | 2.7    | -          | 78       | 290        | 0.52  | 25   | 3150. | -        | -            | -     | 840   | -    |
| 3S1E02J002               | 5/19/20  | ZONE7 | 19.7   | 3579     | 7.5  | 179 | 91       | 453      | 2.2    | 578        | 211      | 810        | 7.2   | 27.8 | 5300  | < 5      | < 500        | 6.7   | 2091  | 823  |
| 3S1E02J003               | 6/24/20  | ZONE7 | 24.6   | 1389     | 7.2  | 50  | 26       | 228      | 18     | 310        | 106      | 253        | 2.29  | 15   | 1100  | 3.9      | < 200        | 22    | 859   | 234  |
| 3S1E02K002               | 6/24/20  | ZONE7 | 25.3   | 1132     | 7.7  | 21  | 20       | 206      | 2.2    | 501        | 49       | 97         | 6.47  | 21.4 | 1020  | 6.8      | < 100        | 14    | 693   | 134  |
| 3S1E02M003               | 3/5/20   | ZONE7 | -      | 2026     | 7.4  | 42  | 53       | 350      | 2.3    | 850        | 79       | 203        | 12.5  | 16.7 | 1660  | 7.9      | < 200        | 37    | 1222  | 324  |
| 3S1E02N006               | 5/19/20  | ZONE7 | 20.4   | 1650     | 7.3  | 80  | 49       | 197      | 1.8    | 503        | 90       | 256        | < 0.1 | 19.9 | 3300  | 3.5      | < 100        | 2.3   | 942   | 402  |
| 3S1E02P003               | 8/11/20  | ZONE7 | 21.7   | 812      | 7.8  | 41  | 34       | 92       | 1.8    | 296        | 53       | 79         | 4.1   | 25.7 | 660   | 2.5      | < 100        | 5.8   | 492   | 242  |
| 3S1E02Q001               | 10/15/19 | ZONE7 | 20.7   | 1880     | 7.4  | 80  | 47       | 226      | 7      | 477        | 115      | 322        | 0.36  | 16   | 2830  | 9.9      | 910          | < 2   | 1050  | 394  |
| 3S1E02Q001               | 9/2/20   | ZONE7 | 24     | 1895     | 7.5  | 84  | 52       | 239      | 7.3    | 494        | 148      | 326        | 0.64  | 19   | 2940  | 6.8      | 1150         | < 2   | 1122  | 424  |
| 3S1E02R001               | 11/12/19 | LWRP  | -      | 1870     | -    | 98  | 62       | 180      | 1.5    | -          | 94       | 363        | 9.9   | 27   | 2920. | -        | -            | -     | 1110  | -    |
| 3S1E02R001               | 2/11/20  | LWRP  | -      | 1740     | -    | 84  | 63       | 180      | 1.8    | -          | 84       | 310        | 7     | 27   | 2750. | -        | -            | -     | 1030  | -    |
| 3S1E02R001               | 9/20/20  | LWRP  | -      | 1660     | -    | 86  | 64       | 190      | 1.4    | -          | 77       | 274        | 9.1   | 28   | 3350. | -        | -            | -     | 990   | -    |
| 3S1E03G002               | 3/4/20   | ZONE7 | 23     | 1334     | 7.6  | 65  | 32       | 202      | 2.2    | 566        | 25       | 163        | < 0.1 | 23.5 | 800   | 7        | < 100        | < 1   | 792   | 294  |
| 3S1E04A001               | 3/5/20   | ZONE7 | -      | 1670     | 7.2  | 135 | 32       | 183      | 1.1    | 526        | 41       | 276        | 3.08  | 25.7 | 430   | 2.7      | < 100        | 3     | 967   | 470  |
| 3S1E04J005               | 3/4/20   | ZONE7 | 23.5   | 3275     | 7.8  | 41  | 49       | 800      | 1.6    | 978        | 234      | 496        | 5.69  | 20.3 | 12000 | 8.3      | < 500        | < 3.5 | 2152  | 304  |
| 3S1E04J006               | 3/4/20   | ZONE7 | 20.3   | 1742     | 7.4  | 106 | 40       | 215      | 2.6    | 439        | 87       | 318        | 2.29  | 25.7 | 1640  | 3        | < 100        | < 1   | 1021  | 430  |
| 3S1E04Q002               | 5/20/20  | ZONE7 | 21.2   | 1729     | 7.5  | 88  | 54       | 218      | 2.3    | 434        | 87       | 309        | 2.24  | 23.5 | 2300  | 3.8      | < 200        | 6.8   | 1006  | 442  |
| 3S1E05K006               | 6/9/20   | ZONE7 | 32.8   | 2007     | 7.4  | 135 | 57       | 263      | 1.9    | 666        | 221      | 225        | 9.3   | 21.4 | 1880  | 2.3      | < 200        | 2.4   | 1294  | 573  |
| 3S1E05K007               | 6/9/20   | ZONE7 | 29.7   | 971      | 7.9  | 27  | 32       | 143      | 1.8    | 323        | 127      | 72         | < 0.1 | 32.1 | 960   | 9.5      | < 100        | < 1   | 595   | 200  |
| 3S1E05L003               | 6/9/20   | ZONE7 | 32.7   | 1512     | 7.6  | 63  | 35       | 170      | 1.1    | 441        | 182      | 168        | < 0.1 | 23.5 | 990   | 3.7      | < 100        | 1.2   | 861   | 302  |
| 3S1E05P006               | 5/20/20  | ZONE7 | 20.6   | 4013     | 7.2  | 262 | 162      | 469      | 1.9    | 563        | 1097     | 562        | 4.43  | 27.8 | 1600  | < 5      | < 500        | < 5   | 2882  | 1322 |
| 3S1E06F003               | 5/27/20  | ZONE7 | 22.3   | 4372     | 7    | 280 | 154      | 490      | 3      | 577        | 690      | 895        | < 0.1 | 21.4 | 2900  | < 5      | < 500        | < 5   | 2818  | 1335 |
| 3S1E06M002               | 12/27/19 | DSRSD | 14.2   | 8701     | 7.28 | -   | -        | -        | -      | -          | 2610     | 379        | 0.158 | -    | -     | -        | -            | -     | 7025  | -    |
| 3S1E06M002               | 4/28/20  | DSRSD | 20.1   | 8448     | 7.41 | -   | -        | -        | -      | -          | 3060     | 388        | < 0.1 | -    | -     | -        | -            | -     | 7080  | -    |
| 3S1E06N002               | 12/26/19 | DSRSD | 17.3   | 23620    | 6.8  | -   | -        | -        | -      | -          | 1370     | 9000       | < 0.1 | -    | -     | -        | -            | -     | 20340 | -    |



|                          |          |       | TEMP | EC       |      |     |          | Min  | eral C | onstitu | ents (m | g/L)  |       |      |      | Select N | letals (ug/l | _)  | TDS   | Hard |
|--------------------------|----------|-------|------|----------|------|-----|----------|------|--------|---------|---------|-------|-------|------|------|----------|--------------|-----|-------|------|
| SITE ID                  | DATE     | Ву    | °C   | umhos/cm | рН   | Ca  | Mg       | Na   | K      | нсоз    | SO4     | CI    | NO3N  | SiO2 | В    | As       | Fe           | Cr  | mg/L  | mg/L |
| 3S1E06N002               | 4/28/20  | DSRSD | 21.5 | 21960    | 6.87 | -   | -        | -    | _      | -       | 1440    | 8420  | < 0.1 | -    | -    | -        | -            | -   | 16520 | -    |
| 3S1E06N003               | 12/27/19 | DSRSD | 16.2 | 1180     | 8.48 | -   | -        | -    | -      | -       | 230     | 92.1  | 19.8  | -    | -    | -        | -            | -   | 1000  | -    |
| 3S1E06N003               | 4/28/20  | DSRSD | 24.7 | 1593     | 8.54 | -   | -        | -    | -      | -       | 357     | 144   | 16.6  | -    | -    | -        | -            | -   | 1082  | -    |
| 3S1E06N004               |          | DSRSD | 16.2 | 3816     | 7.53 | -   | -        | -    | -      | -       | 1450    | 179   | 3.4   | -    | -    | -        | -            | -   | 2952  | -    |
| 3S1E06N004               | 4/28/20  | DSRSD | 22.6 | 4488     | 7.21 | _   | _        | _    |        | _       | 2060    | 181   | 0.23  | _    | _    | _        | _            | _   | 4088  | -    |
| 3S1E06N005               | 12/27/19 | DSRSD | 17.4 | 28430    | 7.23 | _   | _        | _    |        | _       |         | 10400 |       | _    | _    | _        | _            | _   | 23900 | -    |
| 3S1E06N005               | 4/28/20  | DSRSD | 24.3 | 32280    | 7.28 | _   | _        | _    | _      | -       |         | 11800 |       | _    | _    | _        | _            | -   | 24520 | -    |
| 3S1E06N006               |          | DSRSD | 16.8 | 25890    | 7.12 | _   |          | _    | _      | _       | 332     | 3740  | 0.856 | _    | _    | _        | _            | _   | 14940 | -    |
| 3S1E06N006               | 4/28/20  | DSRSD | 21.9 | 23520    | 7.19 | _   |          | _    | _      | _       | 1070    | 9840  | < 0.1 | _    |      | _        | _            | _   | 20380 | _    |
| 3S1E07B002               | 6/9/20   | ZONE7 | 24.8 | 691      | 8.8  | 8   | 9        | 146  | 1.6    | 242     | 19      | 92    | 0.1   | 10.1 | 960  | 2.7      | < 100        | 1.3 | 410   | 54   |
| 3S1E07B012               | 6/9/20   | ZONE7 | 29.4 | 15290    | 7.2  | 494 | 406      | 2550 | 7.2    | 341     | 1977    | 4592  | < 0.1 | 20.3 | 1960 | < 25     | < 2500       | 49  | 10214 | 2904 |
| 3S1E07D012               |          | DSRSD | 18.8 | 3655     | 7.09 |     |          | 2330 | -      | -       | 118     | 729   | < 0.1 | -    | 1900 | -        | -            | -   | 1570  | 2304 |
| 3S1E07D001               | 4/27/20  | DSRSD | 22.2 | 4513     | 7.03 | _   |          | _    |        |         | 142     | 1360  | < 0.1 | _    |      | _        | _            | _   | 3198  |      |
| 3S1E07D001               |          | DSRSD | 19   | 21670    | 6.9  | _   |          | _    | _      | -       | 11800   |       | < 0.1 | _    |      | _        | _            | _   | 22520 | _    |
| 3S1E07D002               | 4/27/20  | DSRSD | 21.8 | 23810    | 7.14 | _   |          | _    |        | -       | 10900   |       | < 0.1 | -    |      | _        | _            | _   | 22900 |      |
| 3S1E07D002<br>3S1E07D003 |          | DSRSD | 18.1 | 15110    | 7.14 | -   | -        | _    |        | _       | 170     | 5970  | < 0.1 | _    |      | _        | -            | _   | 11460 | _    |
| 3S1E07D003<br>3S1E07D003 | 4/28/20  | DSRSD | 18.6 | 19430    | 7.02 | -   | -        | -    | -      | -       | 459     | 7760  | < 0.1 | _    |      |          | _            | -   | 13730 | -    |
|                          |          |       |      |          |      | -   |          | -    | -      |         |         |       |       | _    | -    | -        | -            |     |       | _    |
| 3S1E07D004               | 12/27/19 | DSRSD | 18   | 30740    | 7.12 | -   | -        | -    | -      | -       | 8810    | 9960  | < 0.1 | -    | -    | -        | -            | -   | 28360 | -    |
| 3S1E07D004               | 4/28/20  | DSRSD | 19.7 | 33270    | 7.16 | 115 | -<br>E21 | 2250 |        | - 406   | 9150    | 11400 |       |      | F200 | - 20     | - 2000       | 100 | 29300 | 2100 |
| 3S1E07G007               | 6/9/20   | ZONE7 | 32.6 | 18330    | 7.1  | 415 | 521      | 3250 | 6.6    | 496     | 2753    | 5090  | < 0.1 | 20.8 | 5300 | < 20     | < 2000       | 108 | 12301 | 3180 |
| 3S1E07J005               | 5/13/20  | ZONE7 | 20   | 2569     | 7.3  | 106 | 97       | 376  | 2.6    | 965     | 442     | 184   | < 0.1 | 27.8 | 7600 | 3.5      | < 200        | 2.7 | 1711  | 663  |
| 3S1E08B001               | 9/2/20   | ZONE7 | 18.2 | 1947     | 7.9  | 98  | 85       | 256  | 2      | 603     | 255     | 251   | 0.63  | 23.5 | 3000 | < 2      | < 200        | < 2 | 1271  | 595  |
| 3S1E08G004               | 5/20/20  | ZONE7 | 21.1 | 1972     | 7.4  | 73  | 62       | 267  | 2.3    | 624     | 127     | 279   | 4.63  | 27.8 | 3600 | < 2      | < 200        | 13  | 1166  | 437  |
| 3S1E08H018               | 10/7/19  | ZONE7 | 19.4 | 1409     | 7.4  | 99  | 64       | 118  | 3.2    | 483     | 117     | 179   | 2.97  | 22.5 | 1280 | 1.3      | < 100        | 5.9 | 854   | 512  |
| 3S1E08H018               | 7/8/20   | ZONE7 | 19.5 | 1403     | 7.2  | 98  | 64       | 120  | 3.5    | 467     | 113     | 172   | 2.79  | 27.8 | 1330 | < 1      | < 100        | 5.4 | 841   | 508  |
| 3S1E08K001               | 5/13/20  | ZONE7 | 18.7 | 2031     | 7.1  | 165 | 133      | 126  | 3.4    | 753     | 279     | 192   | 2.7   | 30   | 1900 | < 2      | < 200        | 8.9 | 1311  | 960  |
| 3S1E08N001               | 5/13/20  | ZONE7 | 19.1 | 2213     | 7.2  | 176 | 135      | 157  | 3.8    | 806     | 331     | 204   | 2.56  | 32.1 | 2600 | < 2      | < 200        | 7.1 | 1447  | 997  |
| 3S1E09B001               | 10/8/19  | ZONE7 | 19.3 | 1075     | 7.6  | 73  | 61       | 68   | 2.4    | 393     | 73      | 130   | 3.52  | 21.4 | 530  | 1.9      | < 100        | 7.5 | 638   | 433  |
| 3S1E09B001               | 7/7/20   | ZONE7 | 19.9 | 934      | 7.6  | 63  | 54       | 62   | 2.4    | 348     | 58      | 104   | 3.02  | 27.8 | 440  | 1.4      | < 100        | 6.8 | 557   | 379  |
| 3S1E09J007               | 5/7/20   | ZONE7 | 20.9 | 746      | 7.5  | 50  | 31       | 62   | 1.8    | 248     | 50      | 100   | < 0.1 | 14.3 | 520  | < 1      | < 100        | < 1 | 432   | 252  |
| 3S1E09J008               | 5/7/20   | ZONE7 | 23.7 | 942      | 7.5  | 91  | 40       | 38   | 2      | 298     | 61      | 136   | 0.41  | 19.9 | 350  | < 1      | < 100        | 3.7 | 537   | 392  |
| 3S1E09J009               | 5/7/20   | ZONE7 | 20.2 | 681      | 7.4  | 53  | 43       | 25   | 1.7    | 296     | 41      | 58    | 3.42  | 25.7 | 230  | < 1      | < 100        | 9.8 | 409   | 310  |
| 3S1E09M002               | 10/7/19  | ZONE7 | 17.5 | 1090     | 7.4  | 60  | 55       | 93   | 2.2    | 358     | 68      | 143   | 1.87  | 21.6 | 1060 | 1.3      | < 100        | 4.5 | 628   | 377  |
| 3S1E09M002               | 7/7/20   | ZONE7 | 17.9 | 1023     | 7.5  | 55  | 50       | 87   | 2.1    | 334     | 69      | 129   | 0.94  | 27.8 | 1010 | < 1      | 122          | 3.5 | 589   | 342  |
| 3S1E09M003               | 10/7/19  |       |      | 1066     | 7.3  | 71  | 45       | 87   | 2.3    | 350     | 78      | 134   | 1.52  | 18.3 | 1020 | < 1      | < 100        | 5.7 | 615   | 363  |
| 3S1E09M003               | 7/8/20   | ZONE7 | 17.9 | 1009     | 7.2  | 67  | 43       | 82   | 2.2    | 327     | 73      | 121   | 1.16  | 23.5 | 940  | < 1      | < 100        | 4.4 | 578   | 345  |
| 3S1E09M004               |          | ZONE7 | 18.2 | 1105     | 7.4  | 53  | 41       | 118  | 2.4    | 375     | 88      | 137   | 1.41  | 22.3 | 1410 | 1.4      | < 100        | 6.6 | 653   | 301  |
| 3S1E09M004               | 7/6/20   | ZONE7 | 18.3 | 1067     | 7.5  | 55  | 41       | 119  | 2.6    | 353     | 83      | 127   | 1.44  | 27.8 | 1280 | 1        | < 100        | 5.2 | 636   | 305  |
| 3S1E09P005               | 8/10/20  | ZONE7 | 23   | 721      | 7.2  | 53  | 29       | 59   | 2      | 211     | 51      | 99    | 0.16  | 16.9 | 500  | < 1      | < 100        | 1.6 | 415   | 251  |
| 3S1E09P009               | 5/7/20   | ZONE7 | 18.5 | 788      | 7.2  | 52  | 30       | 68   | 1.9    | 256     | 62      | 104   | 0.22  | 20.5 | 670  | < 1      | < 100        | 2   | 465   | 252  |
| 3S1E09P010               | 5/7/20   | ZONE7 | 25.3 | 882      | 7.3  | 82  | 39       | 45   | 1.7    | 311     | 61      | 112   | 1.47  | 19.7 | 370  | < 1      | < 100        | 3   | 520   | 364  |
| 3S1E09P011               | 5/7/20   | ZONE7 | 18.5 | 445      | 7.9  | 34  | 11       | 51   | 1.3    | 207     | 34      | 19    | < 0.1 | 19.3 | 470  | 6.1      | < 100        | < 1 | 272   | 130  |
| 3S1E10A002               | 10/1/19  | ZONE7 | 19   | 1930     | 7.1  | 85  | 84       | 247  | 2.6    | 537     | 119     | 305   | 9.97  | 30   | 2830 | 2        | < 100        | 5.4 | 1182  | 558  |
| 3S1E10A002               | 5/19/20  | ZONE7 | 18.5 | 1915     | 7.3  | 83  | 76       | 235  | 2.9    | 532     | 119     | 294   | 9.46  | 32.1 | 2900 | < 2      | < 200        | 6.9 | 1146  | 521  |
| 3S1E10B008               | 8/18/20  | ZONE7 | 20.3 | 1455     | 7.3  | 70  | 75       | 136  | 2.1    | 552     | 82      | 160   | 9.62  | 27.8 | 2740 | 1.9      | < 100        | 14  | 868   | 482  |
| 3S1E10B009               | 8/18/20  | ZONE7 | 31.5 | 1081     | 7.6  | 62  | 55       | 86   | 2.2    | 392     | 62      | 120   | 6.37  | 25.7 | 1100 | 2.4      | < 100        | 6.9 | 635   | 382  |
| 3S1E10B010               | 8/18/20  | ZONE7 | 20   | 731      | 7.6  | 42  | 39       | 55   | 1.7    | 306     | 42      | 65    | 2.94  | 25.7 | 430  | 1.9      | < 100        | 9   | 435   | 266  |
| 3S1E10B011               | 8/18/20  | ZONE7 | 20.6 | 798      | 7.6  | 49  | 42       | 56   | 1.9    | 314     | 45      | 65    | 5.57  | 27.8 | 540  | 1.8      | < 100        | 6.6 | 466   | 295  |
| 3S1E10B014               | 5/19/20  | ZONE7 | 21   | 627      | 7.7  | 46  | 40       | 33   | 1.7    | 264     | 34      | 44    | 4.39  | 27.8 | 260  | 1        | < 100        | 13  | 376   | 280  |
| 3S1E10B016               | 10/8/19  | ZONE7 | 18.7 | 705      | 7.5  | 46  | 42       | 35   | 1.7    | 300     | 39      | 52    | 3.81  | 21.4 | 340  | 1.2      | < 100        | 16  | 402   | 288  |



| Tr. F.000                |                    |       | TEMP   | EC           |     |          |           | Min       | oral C | onstitue   | nte (m   | a/L)       |       |            |                | Salact M  | letals (ug/L   | ١    | TDS         | Hard       |
|--------------------------|--------------------|-------|--------|--------------|-----|----------|-----------|-----------|--------|------------|----------|------------|-------|------------|----------------|-----------|----------------|------|-------------|------------|
| SITE ID                  | DATE               | By    | °C     | umhos/cm     | рН  | Ca       | Mg        | Na        | K      | нсоз       | SO4      | g,L)<br>Cl | NO3N  | SiO2       | В              | As        | Fe             | Cr   | mg/L        | mg/L       |
| 3S1E10B016               | 7/7/20             | ZONE7 | 18.6   | 656          | 7.7 | 47       | 40        | 38        | 1.8    | 296        | 39       | 46         | 3.64  | 27.8       | 340            | 1         | < 100          | 13   | 402         | 282        |
| 3S1E10D010               | 8/19/20            | ZONE7 | 20     | 1079         | 7.8 | 31       | 33        | 162       | 1.1    | 438        | 46       | 115        | < 0.1 | 23.5       | 1430           | 11        | < 100          | < 1  | 629         | 214        |
| 3S1E10D002               | 8/19/20            | ZONE7 | 27     | 1120         | 7.6 | 67       | 57        | 62        | 2.1    | 310        | 62       | 110        | 7.63  | 25.7       | 1130           | 1.5       | < 100          | 9.3  | 573         | 403        |
| 3S1E10D003               | 8/19/20            | ZONE7 | 20.6   | 795          | 7.6 | 48       | 42        | 56        | 1.6    | 311        | 44       | 76         | 3.61  | 25.7       | 460            | 1.5       | < 100          | 13   | 463         | 293        |
| 3S1E10D005               | 8/19/20            | ZONE7 | 20.8   | 610          | 7.6 | 42       | 35        | 38        | 1.8    | 269        | 32       | 39         | 4.85  | 27.8       | 210            | < 1       | < 100          | 10   | 370         | 249        |
| 3S1E10B003               | 10/8/19            | ZONE7 | 16.2   | 889          | 7.4 | 58       | 50        | 39        | 1.8    | 307        | 47       | 101        | 2.36  | 19.2       | 360            | <1        | < 100          | 8.5  | 478         | 351        |
| 3S1E10K003               | 7/6/20             | ZONE7 | 17.8   | 845          | 7.5 | 61       | 52        | 42        | 1.9    | 316        | 47       | 100        | 2.14  | 23.5       | 390            | <1        | < 100          | 5.9  | 493         | 368        |
| 3S1E11B001               | 11/12/19           | LWRP  | -      | 1820         | -   | 72       | 60        | 230       | 1.1    | -          | 99       | 290        | 11.3  | 28         | 4600.          | -         | -              | -    | 1100        | -          |
| 3S1E11B001               | 2/11/20            | LWRP  | -      | 1790         | -   | 62       | 59        | 220       | 1.1    | -          | 99       | 270        | 10.8  | 28         | 2100.          | _         | _              |      | 1060        | _          |
| 3S1E11B001               | 9/20/20            | LWRP  |        | 1790         |     | 67       | 61        | 230       | 1.1    | -          | 96       | 266        | 9.5   | 30         | 4100.          | _         | _              |      | 1070        | -          |
| 3S1E11D001               | 10/15/19           |       | 20.2   | 1792         | 7.1 | 76       | 60        | 218       | 1.7    | 553        | 92       | 265        | 4.44  | 17.9       | 2900           | 4.2       | < 100          | 4.5  | 1023        | 437        |
| 3S1E11C003               | 8/19/20            | ZONE7 | 31.1   | 1792         | 7.1 | 79       | 58        | 218       | 1.6    | 558        | 93       | 254        | 4.68  | 21.4       | 3000           | 3.4       | < 100          | 2.4  | 1023        | 437        |
| 3S1E11G001               | 10/1/19            | ZONE7 | 20.7   | 1243         | 7.3 | 71       | 76        | 105       | 3.1    | 493        | 67       | 120        | 10.1  | 36.4       | 1000           | 1.6       | < 100          | 7.6  | 766         | 491        |
| 3S1E11G001               | 8/18/20            | ZONE7 | 27.1   | 1231         | 7.3 | 65       | 79        | 89        | 2.6    | 493        | 69       | 120        | 10.1  | 34.2       | 890            | 1.4       | < 100          | 6.5  | 748         | 488        |
| 3S1E11G001               | 10/1/19            | ZONE7 | 20.5   | 1251         | 7.3 | 66       | 80        | 99        | 2.9    | 484        | 67       | 120        | 10.2  | 34.2       | 1040           | 5.8       | < 200          | 8.7  | 753         | 495        |
| 3S1E11G002               | 8/18/20            | ZONE7 | 27.3   | 1096         | 7.9 | 63       | 71        | 69        | 2.9    | 435        | 60       | 108        | 7.53  | 25.7       | 770            | < 1       | < 100          | 8.8  | 647         | 449        |
| 3S1E11G002               | 10/1/19            | ZONE7 | 19.9   | 663          | 7.5 | 46       | 43        | 33        | 1.8    | 292        | 37       | 46         | 3.75  | 27.8       | 270            | <1        | < 100          | 14   | 396         | 294        |
| 3S1E11G003               | 8/18/20            | ZONE7 | 21     | 668          | 7.5 | 42       | 44        | 30        | 1.6    | 297        | 38       | 45         | 3.77  | 25.7       | 250            | <1        | < 100          | 12   | 389         | 286        |
| 3S1E11G003               | 10/1/19            | ZONE7 | 19.7   | 1265         | 7.4 | 69       | 76        | 103       | 2.9    | 478        | 67       | 120        | 10.2  | 36.4       | 1030           | 1.6       | < 100          | 7.8  | 755         | 484        |
| 3S1E11G004               | 8/18/20            | ZONE7 | 20.9   | 645          | 7.5 | 38       | 40        | 46        | 1.9    | 325        | 40       | 29         | 2.56  | 27.8       | 290            | 1.3       | < 100          | 17   | 394         | 260        |
|                          | 10/8/19            | ZONE7 | 17.7   | 733          | 7.5 | 49       | 41        | 31        | 1.6    | 277        | 40       | 64         | 4.17  | 19.6       | 280            |           | < 100          | 10   | 401         | 291        |
| 3S1E11M003               |                    | ZONE7 | 18.4   | 705          | 7.5 | 50       | 44        | 32        | 1.7    | 285        | 41       | 61         | 3.89  | 25.7       | 290            | < 1       | < 100          | 7.7  | 414         |            |
| 3S1E11M003<br>3S1E11P006 | 7/6/20<br>5/19/20  | ZONE7 | 18.9   | 745          | 7.4 | 70       | 32        | 42        | 1.7    | 248        | 48       | 88         | 1.08  | 18.8       | 390            | < 1       | < 100          | 3.7  | 428         | 306<br>307 |
|                          |                    | LWRP  | 10.9   |              | 7.5 |          |           |           |        | 240        |          |            |       |            |                | < 1       | < 100          | 3.1  |             | 307        |
| 3S1E12A002               | 11/12/19           |       | -      | 1260<br>1250 | -   | 69       | 84        | 56        | 2.5    | -          | 69       | 151        | 11.5  | 33         | 620.           |           | -              | -    | 410         | -          |
| 3S1E12A002               | 2/11/20<br>9/20/20 | LWRP  | -      | 1220         | -   | 65<br>60 | 85<br>85  | 54<br>53  | 2.7    | -          | 63<br>64 | 147        | 12.1  | 33<br>36   | 330.<br>610.   | -         | -              | -    | 740<br>730  | -          |
| 3S1E12A002               |                    | LWRP  | -      | 1680         | -   |          | 81        |           | 2.4    | -          | 74       |            | 13.2  | 38         |                |           | -              | -    |             | -          |
| 3S1E12D002               | 11/12/19           | LWRP  | -      | 1680         | -   | 93       | 96        | 140       | 5.6    |            | 68       | 154        | 12.1  | 35         | 3400.          | -         | -              | -    | 670         | -          |
| 3S1E12D002               | 2/11/20<br>9/20/20 | LWRP  | -      | 1650         | -   | 96<br>91 |           | 160       | 6.3    | -          | 70       | 154        |       | 38         | 2330.<br>3280. | -         | -              | -    | 1020        | -          |
| 3S1E12D002               |                    |       | 22.3   | 1083         | 7.1 | -        | 100<br>74 | 170<br>72 | 2.4    |            |          | 154        | 11    | 30         |                |           | - 200          | - 11 | 1010<br>640 | 443        |
| 3S1E12G001               | 10/1/19            | ZONE7 | 22.3   |              | 7.1 | 55       |           |           |        | 413        | 59       | 106        | 8.62  |            | 560            | 5.8       | < 200          | 11   |             | 443        |
| 3S1E12G001               | 11/12/19           | LWRP  | -      | 1100         | -   | 57       | 68        | 60        | 2.1    | -          | 57       | 127        | 9.1   | 32         | 670.           | -         | -              | -    | 560         | -          |
| 3S1E12G001               | 2/11/20            | LWRP  | -      | 1100         | -   | 57       | 68        | 60        | 2.2    | -          | 55       | 128        | 9.3   | 31         | 400.           | -         | -              | -    | 650         | -          |
| 3S1E12G001               | 9/20/20            |       | - 20.4 | 1080         | 7.0 | 54       | 71        | 61        | 2.2    | -          | 61       | 126        | 9     | 35         | 800.           | - 4       | - 100          | - 10 | 640         | -          |
| 3S1E12H004               | 5/6/20             | ZONE7 | 20.1   | 770          | 7.6 | 58       | 51        | 33        | 1.7    | 328        | 46       | 64         | 4.74  | 27.8       | 300            | < 1       | < 100          | 10   | 464         | 355        |
| 3S1E12H005               |                    | ZONE7 |        | 655          | 7.7 | 51       | 43        | 30        | 1.8    | 306<br>293 | 41<br>36 | 44         | 2.78  | 30         | 280            | < 1       | < 100          | 15   | 404         | 305        |
| 3S1E12H006               | 5/6/20             | ZONE7 | 21.4   | 590          |     | 47       | 31        | 41        |        |            |          | 27         | 2.02  | 27.8       |                | 1.5       | < 100          | 18   | 365         | 245        |
| 3S1E12H007<br>3S1E12K002 | 5/6/20<br>5/6/20   | ZONE7 | 20.5   | 470<br>602   | 7.7 | 5<br>42  | 3         | 102<br>30 | 0.8    | 206        | 18<br>35 | 35<br>63   | 1.37  | 23.5       | 500<br>250     | 27<br>< 1 | < 100<br>< 100 | < 1  | 296<br>356  | 25         |
|                          | 5/6/20             | ZONE7 | 20.7   | 649          |     | 42       | 39        | 31        |        | 231<br>279 | 38       | 46         | 4.07  | 25.7<br>30 | 230            |           | < 100          | 4.8  | 383         | 260        |
| 3S1E12K003               |                    |       |        |              | 7.6 |          |           |           | 1.7    |            |          |            |       |            |                | < 1       |                | 14   |             | 266        |
| 3S1E12K004               | 5/6/20             | ZONE7 | 21.1   | 351          | 7.8 | 19       | 17        | 27        | 1.2    | 163        | 10       | 24         | 1.92  | 21         | 130            | < 1       | < 100          | 3.5  | 208         | 116        |
| 3S1E14B001               | 8/11/20            | ZONE7 | 19.1   | 807          | 7.5 | 73       | 34        | 45        | 1.7    | 287        | 54       | 98         | 1.26  | 18.2       | 380            | < 1       | < 100          | 2.8  | 471         | 322        |
| 3S1E14D002               | 5/19/20            | ZONE7 | 20.5   | 848          | 7.4 | 72       | 34        | 60        | 2      | 269        | 51       | 109        | 0.55  | 20.3       | 510            | < 1       | < 100          | 3.4  | 483         | 320        |
| 3S1E15J003               | 8/19/20            | ZONE7 | 19.6   | 852          | 7.1 | 84       | 41        | 50        | 2      | 395        | 26       | 69         | 1.86  | 16.5       | 200            | < 1       | 1260           | < 1  | 491         | 379        |
| 3S1E15M003               | 8/10/20            | ZONE7 | 20.1   | 853          | 7.2 | 70       | 37        | 57        | 1.6    | 287        | 43       | 99         | 5.48  | 25.7       | 210            | < 1       | < 100          | 1.8  | 499         | 327        |
| 3S1E16A004               | 10/2/19            | ZONE7 | 21.5   | 964          | 7.4 | 108      | 43        | 44        | 2.1    | 332        | 56       | 108        | 2.35  | 23.5       | 400            | < 1       | < 100          | 4.4  | 559         | 447        |
| 3S1E16A004               | 8/10/20            | ZONE7 | 20.7   | 914          | 7.6 | 96       | 37        | 41        | 1.9    | 347        | 55       | 94         | 2.46  | 21.4       | 330            | < 1       | < 100          | 3.9  | 528         | 392        |
| 3S1E16B001               | 8/10/20            | ZONE7 | 20.2   | 581.1        | 7.6 | 55       | 22        | 37        | 1.5    | 256        | 35       | 41         | 2.32  | 23.5       | 230            | 1.2       | < 100          | 10   | 351         | 229        |
| 3S1E16C002               | 3/4/20             | ZONE7 | 17.9   | 942          | 7.4 | 83       | 38        | 75        | 2.1    | 250        | 113      | 116        | 0.71  | 21.4       | 580            | < 1       | < 100          | 3.1  | 576         | 365        |
| 3S1E16C003               | 3/4/20             | ZONE7 | 17.4   | 1165         | 7.4 | 117      | 58        | 68        | 2.8    | 478        | 69       | 125        | 4.37  | 25.7       | 600            | < 1       | < 100          | 6    | 721         | 531        |
| 3S1E16C004               | 3/4/20             | ZONE7 | 16.9   | 1171         | 7.4 | 117      | 56        | 68        | 2.8    | 469        | 69       | 124        | 4.31  | 25.7       | 700            | < 1       | < 100          | 5.9  | 713         | 523        |



| 17- FL000                |                   |               | TEMP         | EC           |             |            |          | Min        | oral C     | onstitue   | onte (m     | a/I \      |               |              |              | Soloot M   | etals (ug/L    | `            | TDS         | Hard        |
|--------------------------|-------------------|---------------|--------------|--------------|-------------|------------|----------|------------|------------|------------|-------------|------------|---------------|--------------|--------------|------------|----------------|--------------|-------------|-------------|
| SITE ID                  | DATE              | By            | °C           | umhos/cm     | рН          | Ca         | Mg       | Na         | K          | HCO3       | SO4         | g/∟)<br>CI | NO3N          | SiO2         | В            | As         | Fe             | Cr           | mg/L        | mg/L        |
|                          |                   | -             |              |              | -           |            |          |            |            |            |             |            |               |              |              |            |                |              | Ť           |             |
| 3S1E16E004               | 6/4/20            | ZONE7         | 25           | 1212         | 7.1         | 120        | 58       | 79         | 2.8        | 503        | 71          | 109        | 5.47          | 23.5         | 700          | < 1        | < 100          | 3.8          | 735         | 539         |
| 3S1E16P005               | 6/9/20            | ZONE7         | 24.7         | 489          | 7           | 34         | 21       | 37         | 2.2        | 187        | 28          | 50         | < 0.1         | 8.8          | 220          | < 1        | < 100          | < 1          | 273         | 172         |
| 3S1E16P005               | 9/2/20            | ZONE7         | 21.1         | 519          | 6.9         | 38         | 26       | 33         | 2.2        | 204        | 28          | 55         | 0.22          | 13.5         | 300          | < 1        | < 100          | <1           | 297         | 202         |
| 3S1E17B004               | 8/10/20           | ZONE7         | 20           | 1525         | 7.2         | 150        | 83       | 69         | 3.2        | 651        | 76          | 147        | 7.27          | 21.4         | 600          | < 1        | < 100          | 4.2          | 902         | 716         |
| 3S1E17D012               | 10/7/19           | ZONE7         | 17.5         | 998          | 7.4         | 88         | 56       | 42         | 2.1        | 425        | 65          | 84         | 4.66          | 19.5         | 390          | 1.1        | 170            | 9.1          | 587         | 451         |
| 3S1E17D012               | 7/7/20            | ZONE7         | 17.7         | 876          | 7.4         | 78         | 48       | 43         | 2          | 389        | 53          | 69<br>91   | 4.37          | 23.5         | 400          | < 1        | < 100          | 6.9          | 528         | 392         |
| 3S1E18A006               | 10/7/19           | ZONE7         | 18           | 1027         | 7.4         | 78         | 50       | 75         | 2          | 414        | 82          |            | 3.07          | 20.3         | 550          | 1.6        | < 100          | 6.3          | 616         | 401         |
| 3S1E18A006               | 7/7/20            | ZONE7         | 17.9         | 1060         | 7.4         | 83         | 50       | 79         | 2.1        | 431        | 86          | 91         | 3.11          | 25.7         | 600          | 1.4        | < 100          | 5.2          | 644         | 412         |
| 3S1E18E004               | 10/2/19           | ZONE7         | 19.1         | 803          | 7.5<br>7.4  | 60         | 22       | 80         | 0.9        | 301        | 62          | 59         | < 0.1         | 21.4         | 500          | < 1        | < 100<br>289   | <1           | 454         | 241         |
| 3S1E18E004               | 5/13/20           | ZONE7         | 17.3         | 719          |             | 56         | 21       | 74         | 0.9        | 312        | 65          | 46         | < 0.1         | 25.7         | 490          | < 1        |                | <1           | 443         | 227         |
| 3S1E18J002               | 10/2/19           | ZONE7         | 22.7         | 3673         | 6.9         | 206        | 217      | 412        | 3          | 924        | 665         | 561        | < 0.1         | 25.7         | 1620         | 18         | < 100          | 1.3          | 2545        | 1409        |
| 3S1E18J002               | 6/4/20            | ZONE7<br>UNKN | 26.9         | 3452<br>1320 | 7.4<br>7.35 | 187<br>132 | 187      | 361        | 2.51       | 846<br>417 | 550<br>98.7 | 525<br>123 | < 0.1         | 23.5         | 1400         | 18         | < 500<br>< 100 | 5.9          | 2253<br>873 | 1238<br>613 |
| 3S1E19A010<br>3S1E19A011 | 6/16/20           | UNKN          |              | 1540         | 7.33        | 147        | 78.3     | 56<br>53.4 | 2.59       | 367        | 114         | 212        | 2.06          | -            |              | < 2        | < 100          | < 10<br>< 10 | 932         | 720         |
|                          |                   |               |              | 923          |             |            | 52       |            |            |            | 67          |            |               |              |              | 1.1        |                |              |             |             |
| 3S1E19C004               | 10/2/19<br>6/4/20 | ZONE7         | 18.2         | 711          | 7.5<br>7.9  | 76<br>47   | 39       | 55<br>52   | 1.9        | 367<br>286 | 23          | 83<br>79   | < 0.1         | 15.2         | 350<br>330   | 1.1        | < 100<br>166   | < 1          | 532<br>396  | 404<br>279  |
| 3S1E19C004               | 5/13/20           | ZONE7         | 20.3         | 1495         | 7.9         | 121        | 92       | 99         | 2.7        | 644        | 209         | 96         | < 0.1         | 15           | 600          | 2.4        | < 100          | <1           | 952         | 680         |
| 3S1E19K001               | 5/13/20           | ZONE7         |              |              | 7.1         |            | 28       |            | 2.1        | 277        |             | 61         | 0.72          |              |              |            |                | 2.7          | 399         |             |
| 3S1E20C007               |                   |               | 18.6         | 670<br>671   | 7.2         | 54         |          | 53<br>54   | 2.1        | 276        | 44          | 59         |               | 17.3         | 320          | < 1        | < 100          |              |             | 248         |
| 3S1E20C007<br>3S1E20C008 | 8/10/20           | ZONE7         | 20.3         | 982          | 7.4         | 51         | 31       | _          | 2.1        |            | 43<br>51    | 85         | 0.64<br>5.17  | 17.5<br>21.4 | 300<br>250   | < 1<br>3.3 | < 100          | 2.5          | 396<br>591  | 256         |
|                          | 5/12/20           | ZONE7         |              |              |             | 108        | 44       | 45         |            | 430        |             |            | -             |              |              |            | < 100          | 4.3          |             | 454         |
| 3S1E20C009               | 5/12/20           | ZONE7         | 24.5         | 993          | 7.5         | 93         | 51       | 54         | 2.2        | 424        | 63          | 92         | 3.03          | 23.5         | 400          | 1.2        | < 100          | 4.5          | 601         | 443         |
| 3S1E20J004               | 6/4/20            | ZONE7         | 29.7         | 1001         | 6.8<br>7.1  | 53         | 38<br>44 | 125        | 1.3<br>2.2 | 376        | 55          | 101<br>77  | 4.99          | 32.1         | 600          | < 1        | < 100          | 2.2          | 613         | 289         |
| 3S1E20M011               | 6/4/20            | ZONE7         | 32.3         | 923          |             | 80         |          | 58         |            | 382        | 58          |            | 3.05          | 23.5         | 380          | < 1        | < 100          | 2.4          | 544         | 381         |
| 3S1E20Q002<br>3S1E22D002 | 6/4/20            | ZONE7         | 27.8         | 1355<br>996  | 7.2<br>6.7  | 71         | 75<br>42 | 126<br>119 | 0.8        | 627<br>311 | 19<br>56    | 165<br>111 | < 0.1<br>9.58 | 23.5<br>47.1 | 570<br>< 100 | < 1<br>< 1 | 9900           | 1.7<br>3.2   | 790<br>616  | 488<br>285  |
| 3S1E22D002               | 6/11/20           | ZONE7         | 20.4         | 896          | 6.8         | 45<br>49   | 40       | 68         | 1.2        | 170        | 15          | 181        | 5.8           | 36.4         | 110          | < 1        | < 100          | 2.7          | 500         | 287         |
|                          | 6/11/20           | ZONE7         | 22.4         | 796          | 7.2         | 52         | 30       | 73         | 1.5        | 246        | 28          | 110        | 3.68          | 25.7         | 350          | < 1        | < 100          | 2.4          | 458         | 254         |
| 3S1E25C003<br>3S1E29M004 | 5/13/20           | ZONE7         | 17.3         | 558          | 6.9         | 44         | 25       | 42         | 2          | 240        | 28          | 48         | < 0.1         | 23.5         | 300          | 16         | 3800           | < 1          | 331         | 212         |
| 3S1E29N004               | 5/13/20           | ZONE7         | 18.7         | 1121         | 7.2         | 56         | 53       | 118        | 2.1        | 548        | 16          | 115        | < 0.1         | 20.5         | 1400         | < 1        | 198            | 1.3          | 651         | 360         |
| 3S1W01B009               | 5/12/20           | ZONE7         | 19.8         | 1176         | 7.6         | 74         | 30       | 152        | 1.6        | 406        | 93          | 119        | 6.95          | 23.5         | 550          | 6          | < 100          | <1           | 724         | 306         |
|                          | 5/12/20           |               | 19.6         | 806          | 7.6         | 48         |          | 123        | 0.8        | 385        |             | 88         |               | 27.8         | 520          | -          | 134            |              | 491         | 174         |
| 3S1W01B010<br>3S1W01B011 | 5/12/20           | ZONE7         | 20.3         | 905          | 7.0         | 30         | 13<br>8  | 154        | 1          | 272        | <1          | 161        | < 0.1         | 25.7         | 600          | 133<br>19  | < 100          | < 1<br>< 1   | 514         | 108         |
| 3S1W01J001               | 12/26/19          | DSRSD         | 17.2         | 3077         | 7.28        | 30         | 0        | -          | -          | 212        | 637         | 232        | < 0.1         | 23.1         | 000          | 19         | < 100          | -            | 2070        | 100         |
| 3S1W01J001               | 4/28/20           | DSRSD         | 23.7         | 2951         | 7.27        | -          |          | -          | -          | -          | 576         | 234        | 0.1299        | -            | -            | -          | -              | _            | 2036        |             |
| 3S1W01J001               | 12/26/19          |               |              | 2399         | 7.29        | -          | -        | -          | -          | -          | 517         | 95.1       | 11.1          | _            | -            | -          | -              | -            | 1660        | _           |
| 3S1W01J002               | 4/28/20           |               | 23.6         | 2461         | 7.34        | -          | _        | _          | -          | _          | 526         | 109        | 9.07          | _            | -            | _          | _              | _            | 1672        |             |
| 3S1W013002<br>3S1W02A002 | 5/27/20           |               | 21.1         | 1596         | 6.7         | 185        | 40       | 107        | 0.8        | 664        | 81          | 179        | 2.91          | 23.5         | 420          | 1.6        | < 100          | 2.1          | 956         | 627         |
| 3S1W12A002               | 12/26/19          |               | 17.5         | 6810         | 7.22        | -          | -        | -          | -          | -          | 116         | 2300       | < 0.1         | 23.5         | -            | -          | -              | -            | 4236        | 021         |
| 3S1W12A009               | 4/27/20           |               | 21.3         | 6770         | 7.14        | -          | -        | _          | -          | -          | 107         | 2280       | < 0.1         | -            |              | -          | -              | -            | 5112        |             |
| 3S1W12A009               | 12/26/19          |               | 17.4         | 2669         | 7.14        | -          | _        | _          | _          | _          | 722         | 156        | 3.97          | _            |              | _          | -              | _            | 1862        | _           |
| 3S1W12A010               |                   | DSRSD         | 23.1         | 2805         | 7.45        | -          |          | -          | -          | -          | 796         | 118        | 2.15          | -            | -            | -          | -              | _            | 1944        | -           |
| 3S1W12B002               | 5/27/20           | ZONE7         | 21.7         | 1062         | 6.6         | 104        | 34       | 68         | 0.6        | 361        | 110         | 100        | 0.53          | 36.4         | 210          | 1          | < 100          | < 1          | 633         | 400         |
|                          |                   |               |              |              |             |            |          |            |            |            |             |            |               |              |              |            |                |              |             |             |
| 3S1W12J001               | 6/4/20            | ZONE7         | 28.3<br>19.6 | 1492         | 7.4         | 98         | 34       | 185        | 1.4        | 437        | 210         | 149        | < 0.1         | 25.7         | 700          | 2.9        | < 100          | 2            | 919         | 385         |
| 3S1W13J001               | 5/13/20           | ZONE7         |              | 905          | 6.6         | 112        | 41       | 1/13       | 0.6        | 329        | 111         | 72         | 3.5           | 25.7         | 170          | < 1        | < 100          | 1 4 9        | 559         | 388         |
| 3S2E01F002               | 6/15/20           | ZONE7         | 24.5         | 1434         | 7.4         | 112        | 39       | 143        | 6.2        | 497        | 54          | 216        | 0.82          | 42.8         | 1630         | 2.3        | < 100          | 4.9          | 862         | 441         |
| 3S2E02B002               | 6/25/20           | ZONE7         | 34.9         | 474          | 6.9         | 35         | 10       | 37         | 3.8        | 162        | 6           | 58         | 0.2           | 12.2         | < 200        | 3.4        | 720            | 2.4          | 243         | 131         |
| 3S2E03A001               |                   | ZONE7         | 35.8         | 1038         | 7.7         | 51         | 29       | 113        | 1.2        | 299        | 75          | 131        | 5.11          | 36.4         | 1400         | 2.9        | < 100          | 19           | 607         | 247         |
| 3S2E03K003               |                   | ZONE7         | 22.2         | 1128         | 7.3         | 56         | 39       | 109        | 1.8        | 336        | 79<br>45    | 129        | 13.8          | 30           | 1200         | 3.8        | 214            | 32           | 671         | 301         |
| 3S2E05N001               |                   | ZONE7         | 21.3         | 861          | 7.4         | 54         | 56       | 42         | 1.8        | 317        | 45          | 79         | 9.35          | 27.8         | 400          | < 1        | < 100          | 9.3          | 503         | 366         |
| 3S2E07C002               | 11/12/19          | LWKP          | -            | 1250         | -           | 62         | 84       | 53         | 3.6        | -          | 68          | 146        | 11.4          | 37           | 490.         | -          | -              | -            | 740         |             |



|            |          |       | TEMP | EC       |     |     |     | Min  | eral C | onstitue | ents (m | a/L)     |       |      |       | Select M   | etals (ug/L | `       | TDS        | Hard  |
|------------|----------|-------|------|----------|-----|-----|-----|------|--------|----------|---------|----------|-------|------|-------|------------|-------------|---------|------------|-------|
| SITE ID    | DATE     | Ву    | °C   | umhos/cm | рН  | Ca  | Mg  | Na   | K      | нсоз     | SO4     | GI<br>CI | NO3N  | SiO2 | В     | As         | Fe          | ,<br>Cr | mg/L       | mg/L  |
| 3S2E07C002 | 2/11/20  | LWRP  | _    | 1220     |     | 53  | 86  | 54   | 3.3    | -        | 57      | 146      | 11.5  | 37   | 290.  | -          | -           | -       | 730        | -     |
| 3S2E07C002 | 9/20/20  | LWRP  | -    | 700      | _   | 58  | 91  | 57   | 3.3    | -        | 63      | 140      | 12    | 39   | 580.  | _          | -           | -       | 700        | _     |
| 3S2E07H002 | 6/30/20  | ZONE7 | 26.6 | 1205     | 7.1 | 56  | 72  | 116  | 3.2    | 430      | 154     | 96       | 12.5  | 32.1 | 710   | < 1        | < 100       | < 1     | 796        | 438   |
| 3S2E07N002 | 5/20/20  | ZONE7 | 18.1 | 535      | 7.7 | 30  | 33  | 31   | 1.6    | 183      | 37      | 58       | 1.29  | 25.7 | 220   | < 1        | < 100       | 2.8     | 312        | 211   |
| 3S2E07P003 | 10/30/19 | BSK   | 10.1 | -        | -   | -   | -   | -    | 1.0    | 100      | -       | -        | 4.6   | -    | -     | -          | - 100       | < 10    | 270        | -     |
| 3S2E07F003 | 7/14/20  | BSK   | -    | _        | -   | -   | -   | -    | -      | -        |         | -        | 4.0   | _    | -     | _          | -           | < 10    | 490        | _     |
| 3S2E07K003 | 6/30/20  | ZONE7 | 27.7 | 1438     | 7.7 | 50  | 109 | 98   | 1.1    | 463      | 126     | 177      | 7.48  | 34.2 | 380   | < 1        | < 100       | 4.9     | 858        | 573   |
|            |          |       | 20.6 |          | 7.3 | 79  |     | 64   | 1.6    |          | 78      |          | 11.2  |      |       |            |             |         |            |       |
| 3S2E08H003 | 8/11/20  | ZONE7 |      | 1270     | 7.7 |     | 85  |      | 1.9    | 437      | 38      | 148      |       | 30   | 430   | < 1<br>2.1 | < 100       | 6.3     | 750<br>505 | 548   |
| 3S2E08H004 | 8/11/20  | ZONE7 | 21.3 | 1039     | 7.4 | 42  | 44  | 115  |        | 340      |         | 137      | 5.33  | 25.7 | 660   |            | < 100       | 6.7     | 595        | 286   |
| 3S2E08K002 | 8/11/20  | ZONE7 | 24.1 | 1077     | 7.4 | 57  | 82  | 55   | 1.9    | 374      | 70      | 118      | 9.51  | 30   | 380   | 2.9        | 391         | 5.5     | 640        | 480   |
| 3S2E08N002 | 8/11/20  | BSK   | -    | -        | -   | -   | -   | - 70 | -      | -        | -       | -        | -     | -    | 400   | -          | -           | - 0.4   | 470        | - 504 |
| 3S2E09Q004 | 6/30/20  | ZONE7 | 25.9 | 1164     | 7.3 | 50  | 92  | 78   | 1.8    | 381      | 88      | 151      | 10.3  | 38.5 | 770   | 3.2        | 1160        | 8.4     | 733        | 504   |
| 3S2E10F003 | 6/15/20  | ZONE7 | 24   | 1526     | 7.1 | 78  | 100 | 112  | 1.6    | 528      | 102     | 199      | 9.35  | 34.2 | 1370  | < 2        | < 200       | 7.3     | 928        | 607   |
| 3S2E10Q001 | 6/30/20  | ZONE7 | 26.7 | 1655     | 7.1 | 77  | 118 | 118  | 1.5    | 524      | 123     | 231      | 15.2  | 36.4 | 1650  | < 1        | < 100       | 3.8     | 1030       | 678   |
| 3S2E10Q002 | 3/5/20   | ZONE7 | -    | 787      | 7.8 | 48  | 35  | 58   | 1.9    | 189      | 90      | 95       | 6.96  | 27.8 | 760   | 1.4        | < 100       | 12      | 481        | 264   |
| 3S2E11C001 | 6/15/20  | ZONE7 | 22.9 | 136      | 7.1 | 21  | 2   | 5    | 1.4    | 71       | 6       | 2        | 0.78  | 11.3 | < 100 | 1.2        | < 100       | 1.2     | 87         | 60    |
| 3S2E12C004 | 3/5/20   | ZONE7 | -    | 1094     | 7.9 | 51  | 9   | 164  | 1.8    | 126      | 138     | 191      | 3.36  | 34.2 | 3640  | 3.4        | < 100       | 94      | 667        | 167   |
| 3S2E12J003 | 3/5/20   | ZONE7 | -    | 691      | 7.7 | 40  | 12  | 74   | 3.1    | 63       | 63      | 147      | 0.34  | 23.5 | 390   | 2.1        | < 100       | < 1     | 395        | 149   |
| 3S2E14A003 | 6/15/20  | ZONE7 | 22.6 | 1063     | 7.2 | 89  | 39  | 70   | 2.3    | 478      | 32      | 87       | 9.83  | 30   | 520   | 3          | 540         | 25      | 628        | 383   |
| 3S2E14B001 | 8/11/20  | ZONE7 | 19.5 | 1008     | 7.6 | 72  | 42  | 79   | 2      | 324      | 48      | 121      | 9.52  | 25.7 | 670   | < 1        | < 100       | 10      | 592        | 353   |
| 3S2E15E002 | 9/9/20   | ZONE7 | 21.7 | 1146     | 7.4 | 56  | 83  | 57   | 1.6    | 414      | 87      | 114      | 9.6   | 27.8 | 560   | < 1        | 131         | 2.6     | 673        | 482   |
| 3S2E15R017 | 6/30/20  | ZONE7 | 34.6 | 993      | 7.5 | 45  | 86  | 45   | 1.6    | 363      | 70      | 106      | 12.2  | 30   | 600   | < 1        | < 100       | 8.8     | 617        | 464   |
| 3S2E15R018 | 6/30/20  | ZONE7 | 29.3 | 654      | 7.6 | 48  | 41  | 33   | 1.5    | 320      | 45      | 45       | 1.15  | 30   | 210   | < 1        | 133         | < 1     | 407        | 289   |
| 3S2E16A003 | 8/11/20  | ZONE7 | 19.7 | 1124     | 7.5 | 49  | 89  | 51   | 1.4    | 369      | 84      | 126      | 10.8  | 27.8 | 430   | < 1        | < 100       | 4       | 658        | 490   |
| 3S2E16E004 | 6/30/20  | ZONE7 | 25.9 | 605      | 7.1 | 26  | 38  | 48   | 1.9    | 233      | 42      | 62       | 1.76  | 18.8 | 280   | < 1        | < 100       | 1.2     | 359        | 222   |
| 3S2E18B001 | 3/24/20  | BSK   | -    | -        | -   | -   | -   | -    | -      | -        | -       | -        | 6.6   | -    | -     | -          | -           | < 10    | 370        | -     |
| 3S2E18E001 | 5/20/20  | ZONE7 | 21.9 | 539      | 7.5 | 36  | 35  | 23   | 1.9    | 178      | 35      | 58       | 1.49  | 25.7 | 220   | < 1        | < 100       | 2.6     | 309        | 234   |
| 3S2E19D007 | 2/13/20  | ZONE7 | 16.7 | 1071     | 7.5 | 89  | 61  | 39   | 2.3    | 323      | 27      | 174      | 5.72  | 27.8 | < 100 | < 1        | < 100       | 7.5     | 605        | 474   |
| 3S2E19D008 | 2/13/20  | ZONE7 | 14.3 | 1035     | 7.5 | 87  | 57  | 37   | 2.2    | 309      | 26      | 167      | 5.71  | 27.8 | < 100 | < 1        | < 100       | 7.2     | 582        | 452   |
| 3S2E19D009 | 2/13/20  | ZONE7 | 16.7 | 512      | 7.3 | 42  | 18  | 37   | 1.5    | 156      | 16      | 56       | 8.69  | 27.8 | < 100 | < 1        | < 100       | 2.3     | 314        | 178   |
| 3S2E19D010 | 2/13/20  | ZONE7 | 16.2 | 765      | 7.2 | 66  | 29  | 50   | 1.9    | 218      | 31      | 100      | 10.8  | 30   | < 100 | < 1        | < 100       | 1.3     | 463        | 286   |
| 3S2E19N003 | 5/20/20  | ZONE7 | 22.4 | 534      | 7.7 | 39  | 19  | 53   | 1.7    | 235      | 25      | 43       | 0.2   | 30   | 230   | 5.2        | 757         | 2.5     | 328        | 178   |
| 3S2E19N004 | 5/20/20  | ZONE7 | 28.1 | 694      | 7.9 | 25  | 14  | 106  | 2.6    | 252      | 31      | 75       | < 0.1 | 16.5 | 350   | 26         | < 100       | < 1     | 395        | 120   |
| 3S2E20M001 | 2/13/20  | ZONE7 | 18.3 | 964      | 7.2 | 70  | 45  | 76   | 1.9    | 334      | 63      | 114      | 3.28  | 23.5 | 300   | 1.5        | < 100       | < 1     | 573        | 358   |
| 3S2E22B001 | 6/25/20  | ZONE7 | 30.5 | 1400     | 7.3 | 63  | 116 | 65   | 1.3    | 478      | 173     | 144      | 4.7   | 32.1 | 460   | 3.2        | < 200       | < 2     | 851        | 635   |
| 3S2E23E001 | 6/11/20  | ZONE7 | 30.8 | 769      | 7.7 | 36  | 56  | 48   | 1.7    | 353      | 36      | 57       | 2.4   | 23.5 | 410   | < 1        | < 100       | 3.2     | 443        | 321   |
| 3S2E23E002 | 6/11/20  | ZONE7 | 27.9 | 1133     | 7.7 | 41  | 61  | 104  | 2.8    | 379      | 47      | 163      | < 0.1 | 23.5 | 2610  | 2.8        | < 100       | 2.2     | 630        | 353   |
| 3S2E24A001 | 6/15/20  | ZONE7 | 25.9 | 1513     | 6.9 | 119 | 57  | 127  | 1.9    | 527      | 67      | 168      | 24.5  | 32.1 | 990   | < 2        | < 200       | 5.7     | 940        | 533   |
| 3S2E26J002 | 6/11/20  | ZONE7 | 24.7 | 999      | 7.5 | 45  | 64  | 61   | 2.2    | 476      | 47      | 75       | 1.37  | 15.8 | 570   | 2.8        | 543         | 21      | 551        | 376   |
| 3S2E29F004 | 6/11/20  | ZONE7 | 31.4 | 671      | 7.7 | 66  | 29  | 41   | 1.7    | 306      | 56      | 37       | < 0.1 | 21.4 | 320   | 5.4        | < 100       | < 1     | 403        | 284   |
| 3S2E29F004 | 9/2/20   | ZONE7 | 24.7 | 665      | 7.6 | 70  | 31  | 43   | 1.7    | 313      | 60      | 38       | < 0.1 | 23.5 | 300   | 6.3        | 116         | < 1     | 422        | 303   |
| 3S2E30C001 | 5/20/20  | ZONE7 | -    | 756      | 7.4 | 56  | 32  | 57   | 2      | 270      | 44      | 69       | 6.18  | 27.8 | 410   | 2.4        | < 100       | 2.1     | 449        | 272   |
| 3S2E30D002 | 6/11/20  | ZONE7 | 26.9 | 580      | 7.1 | 43  | 23  | 47   | 1.9    | 216      | 32      | 58       | 0.5   | 17.3 | 250   | < 1        | < 100       | < 1     | 331        | 203   |
| 3S2E32E007 | 6/25/20  | ZONE7 | 25.9 | 677      | 6.9 | 38  | 27  | 56   | 1.6    | 173      | 45      | 91       | 5.08  | 20.8 | 140   | < 1        | < 100       | < 1     | 387        | 206   |
| 3S2E33G001 | 6/11/20  | ZONE7 | 29.2 | 474      | 7.4 | 30  | 17  | 46   | 2.6    | 140      | 41      | 53       | < 0.1 | 14.8 | 290   | 1.5        | < 100       | < 1     | 273        | 145   |
| 3S2E33G001 | 9/2/20   | ZONE7 | 28   | 592      | 7.3 | 49  | 27  | 37   | 3      | 227      | 70      | 45       | < 0.1 | 17.5 | 600   | 1.4        | < 100       | < 1     | 360        | 233   |
| 3S2E33K001 | 12/27/19 | VA    | 21   | 1940     | 8.1 | -   | -   | -    | -      | -        | -       | 290      | 2.1   | -    | -     | -          | -           | -       | 1150       | -     |
| 3S2E33K001 | 6/30/20  | VA    | 30   | 1500     | 8.5 | -   | -   | -    | -      | -        | -       | 320      | 0.25  | -    | -     | -          | -           | -       | 1240       | -     |
| 3S2E33K001 | 9/23/20  | VA    | 25   | 2100     | 7.5 | -   | -   | -    | -      | -        | -       | 300      | 0.8   | -    | -     | -          | -           | -       | 1030       | -     |
| 3S2E33L001 | 12/27/19 | VA    | 19   | 1240     | 7.4 | -   | _   | _    | _      | _        | _       | 170      | 3.1   | _    | -     | _          | -           | _       | 702        | _     |



|            |         |       | TEMP | EC       |     |     |    | Mir | eral C | onstitue | ents (m | g/L) |      |      |      | Select M | etals (ug/L | .)  | TDS  | Hard |
|------------|---------|-------|------|----------|-----|-----|----|-----|--------|----------|---------|------|------|------|------|----------|-------------|-----|------|------|
| SITE ID    | DATE    | Ву    | °C   | umhos/cm | рН  | Ca  | Mg | Na  | K      | нсо3     | SO4     | CI   | NO3N | SiO2 | В    | As       | Fe          | Cr  | mg/L | mg/L |
| 3S2E33L001 | 3/18/20 | VA    | 14.5 | 1010     | 7.3 | -   | -  | -   | -      | -        | -       | 130  | 3.9  | -    | -    | -        | -           | -   | 636  | -    |
| 3S2E33L001 | 6/30/20 | VA    | 25   | 864      | 7.8 | -   |    | -   |        | -        | -       | 140  | 0.51 | -    | -    | 1        | -           | 1   | 812  | -    |
| 3S2E33L001 | 9/23/20 | VA    | 23.6 | 1320     | 7.2 | -   |    | -   |        | -        | -       | 180  | 1.3  | -    | -    | 1        | -           | 1   | 842  | -    |
| 3S3E06Q003 | 9/2/20  | ZONE7 | 27   | 2067     | 7.4 | 108 | 44 | 350 | 3      | 363      | 417     | 262  | 7.05 | 55.6 | 6570 | < 2      | < 200       | 3.5 | 1450 | 451  |
| 3S3E07D002 | 6/15/20 | ZONE7 | 27.6 | 2417     | 7.5 | 117 | 66 | 347 | 2.8    | 258      | 300     | 483  | 6.05 | 49.2 | 6810 | < 5      | < 500       | 11  | 1519 | 564  |



### TABLE 7-3 WATER QUALITY RESULTS FOR PFAS 2020 WATER YEAR

### (Only PFAS Compounds with detected concentrations shown)

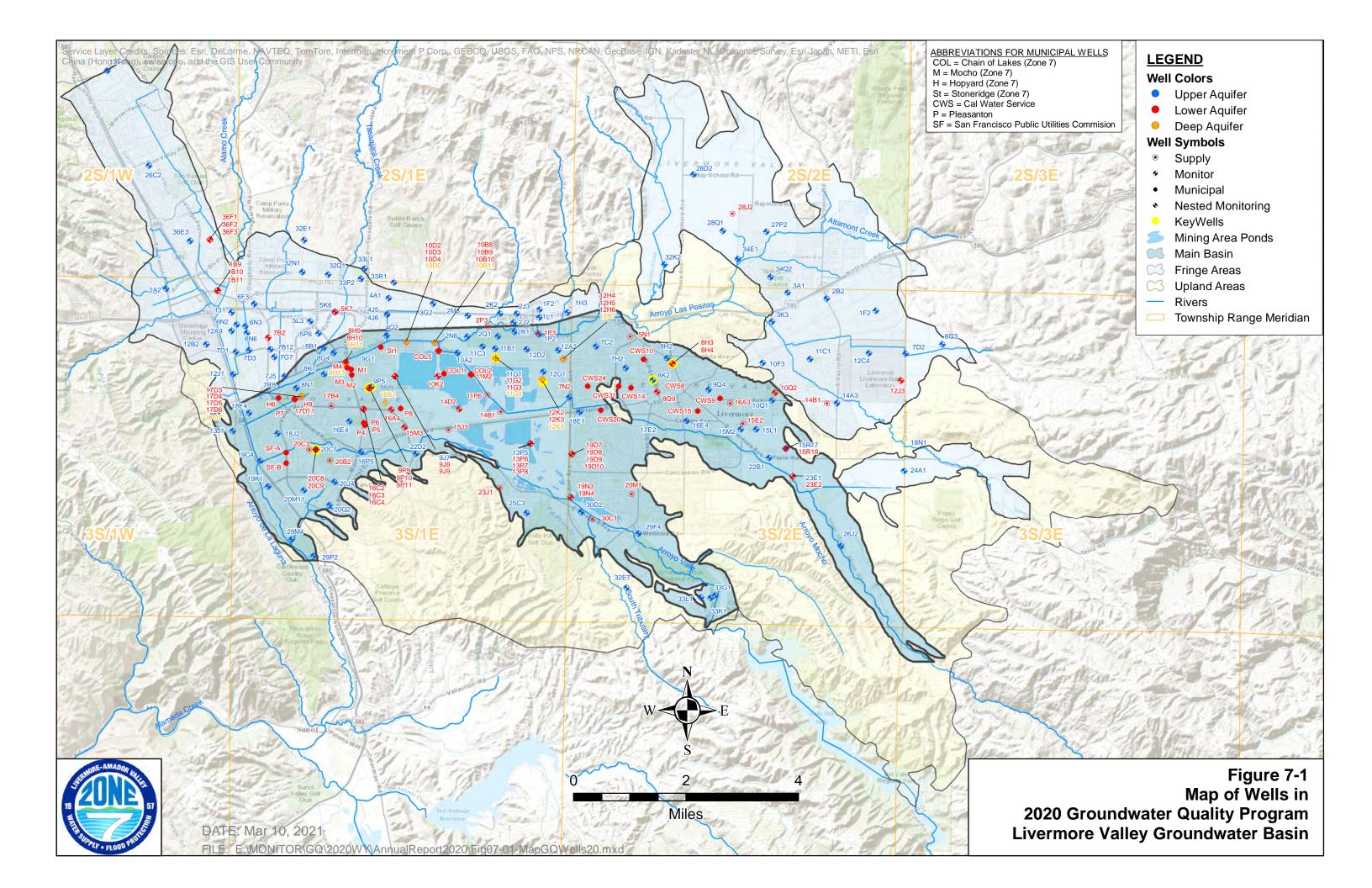
| VA ( - II   | MAZII NI                  | A 'C    | 0         | 11-26- | DEDO | DEDA  | DED : A | DELL: A | DELLA | DELL O | DENIA | DEGA | DEGG |
|-------------|---------------------------|---------|-----------|--------|------|-------|---------|---------|-------|--------|-------|------|------|
| Well        | Well Name                 | Aquifer | Sampled   | Units  | PFBS | PFDA  | PFDoA   | PFHpA   | PFHxA | PFHxS  | PFNA  | PFOA | PFOS |
| 3S/1E 2M 3  | Friesman Rd North         | U       | 3/5/20    | ng/L   | 2.2  | < 2   | < 2     | < 2     | < 2   | 3.4    | < 2   | < 2  | < 2  |
| 3S/1E 2Q 1  | LPGC #1                   | U       | 10/15/19* | ng/L   | 13   | < 2   | < 2     | < 2     | 2     | 22     | < 2   | 4.7  | 37   |
| 3S/1E 3G 2  | fallon rd                 | U       | 3/4/20    | ng/L   | 2.5  | < 2   | < 2     | < 2     | < 2   | 7.4    | < 2   | < 2  | < 2  |
| 3S/1E 4A 1  | SMP-DUB-2                 | U       | 3/5/20    | ng/L   | 8.8  | < 2   | < 2     | 4.6     | 10    | 23     | < 2   | 8.5  | 16   |
| 3S/1E 4J 5  | Pimlico shallow           | U       | 3/4/20    | ng/L   | 22   | < 2   | < 2     | < 2     | < 2   | 21     | < 2   | < 2  | 40   |
| 3S/1E 4J 6  | Pimlico deep              | U       | 3/4/20    | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | < 2    | < 2   | < 2  | < 2  |
| 3S/1E 4Q 2  | gulfstream                | U       | 5/20/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | 5.5    | < 2   | < 2  | 3.1  |
| 3S/1E 8H18  | Mocho 4                   | L       | 10/7/19*  | ng/L   | 4.8  | < 2   | < 2     | < 2     | 3.7   | 16     | < 2   | 3.6  | 14   |
| 3S/1E 9M 2  | Mocho 1                   | L       | 10/7/19*  | ng/L   | 12   | < 2   | < 2     | 3.5     | 11    | 76     | < 2   | 8.9  | 110  |
| 3S/1E 9M 3  | Mocho 2                   | L       | 10/7/19*  | ng/L   | 8    | < 2   | < 2     | 2.7     | 7     | 43     | < 2   | 5.9  | 50   |
| 3S/1E 9M 4  | Mocho 3                   | L       | 10/7/19*  | ng/L   | 6.6  | < 2   | < 2     | 2.5     | 5.8   | 31     | < 2   | 5.7  | 39   |
| 3S/1E 9M 4  | Mocho 3                   | L       | 7/6/20    | ng/L   | 6.6  | < 2.0 | < 2.0   | 2.3     | 5.2   | 27     | < 2.0 | 5.3  | 35   |
| 3S/1E 10A 2 | El C harro Rd             | U       | 10/1/19*  | ng/L   | 25   | < 2   | < 2     | 4.1     | 18    | 120    | < 2   | 13   | 450  |
| 3S/1E 10B 8 | Kaiser Rd Shallow         | L       | 8/18/20   | ng/L   | 130  | < 2   | < 2     | 27      | 120   | 590    | < 2   | 50   | 1400 |
| 3S/1E 10B 9 | Kaiser Rd Middle 1        | L       | 8/18/20   | ng/L   | 14   | < 2   | < 2     | 3.6     | 16    | 110    | < 2   | 7    | 100  |
| 3S/1E 10B10 | Kaiser Rd Middle 2        | L       | 8/18/20   | ng/L   | 3.1  | < 2   | < 2     | < 2     | 2.2   | 15     | < 2   | < 2  | 24   |
| 3S/1E 10B11 | Kaiser Rd Deep            | D       | 8/18/20   | ng/L   | 5.5  | < 2   | < 2     | < 2     | 5.9   | 42     | < 2   | 2.9  | 54   |
| 3S/1E 10B16 | COL 5                     | L       | 10/8/19*  | ng/L   | 2.6  | < 2   | < 2     | < 2     | 2.9   | 20     | < 2   | < 2  | 40   |
| 3S/1E 10D 2 | Stoneridge Shallow        | L       | 8/19/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | < 2    | < 2   | < 2  | < 2  |
| 3S/1E 10D 3 | Stoneridge Middle 1       | L       | 8/19/20   | ng/L   | 12   | < 2   | < 2     | 2.8     | 12    | 96     | < 2   | 5.9  | 150  |
| 3S/1E 10D 4 | Stoneridge Middle 2       | L       | 8/19/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | 3      | < 2   | < 2  | 4.1  |
| 3S/1E 10D 5 | Stoneridge Deep           | D       | 8/19/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | < 2    | < 2   | < 2  | < 2  |
| 3S/1E 10K 3 | COL 1                     | L       | 7/6/20    | ng/L   | 5.8  | < 2.0 | < 2.0   | 2       | 5.1   | 29     | < 2.0 | 5.3  | 38   |
| 3S/1E 11C 3 | LAVWMA ROW                | U       | 10/15/19* | ng/L   | 30   | < 2   | < 2     | 7.4     | 28    | 130    | 2.8   | 19   | 360  |
| 3S/1E 11G 1 | Key_AmE_U                 | U       | 10/1/19*  | ng/L   | 25   | < 2   | < 2     | 8.3     | 24    | 87     | < 2   | 16   | 210  |
| 3S/1E 11G 1 | Key_AmE_U                 | U       | 8/18/20   | ng/L   | 25   | < 2   | < 2     | 7.8     | 26    | 100    | < 2   | 15   | 210  |
| 3S/1E 11G 2 | Rancho Charro Middle 1    | L       | 10/1/19*  | ng/L   | 26   | < 2   | < 2     | 7.7     | 23    | 98     | < 2   | 14   | 160  |
| 3S/1E 11G 2 | Rancho Charro Middle 1    | L       | 8/18/20   | ng/L   | 19   | < 2   | < 2     | 4.3     | 15    | 70     | < 2   | 8.2  | 69   |
| 3S/1E 11G 3 | Rancho Charro Middle 2    | L       | 10/1/19*  | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | 2.6    | < 2   | < 2  | 26   |
| 3S/1E 11G 4 | Rancho Charro Deep        | D       | 10/1/19*  | ng/L   | 25   | < 2   | < 2     | 7.5     | 23    | 93     | < 2   | 14   | 170  |
| 3S/1E 11G 4 | Rancho Charro Deep        | D       | 8/18/20   | ng/L   | 2    | < 2   | < 2     | < 2     | < 2   | 8.2    | < 2   | < 2  | 18   |
| 3S/1E 11M 3 | COL 2                     | L       | 7/6/20    | ng/L   | 3.3  | < 2.0 | < 2.0   | < 2.0   | 2.7   | 14     | < 2.0 | 2.3  | 15   |
| 3S/1E 12A 2 | Airport South             | U       | 10/15/19* | ng/L   | 15   | < 2   | < 2     | 11      | 20    | 52     | < 2   | 19   | 100  |
| 3S/1E 12D 2 | LWRP G6                   | U       | 10/15/19* | ng/L   | 8.5  | < 2   | < 2     | 14      | 36    | 76     | < 2   | 12   | 100  |
| 3S/1E 16A 2 | Pleas 8                   | L       | 12/3/19   | ng/L   | 7.5  | < 1.8 | < 1.8   | 8.1     | 12    | 60     | 4     | 7.5  | 69   |
| 3S/1E 16C 2 | Santa Rita Valley Shallow | L       | 3/4/20    | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | 8.1    | < 2   | < 2  | 9.6  |
| 3S/1E 16C 3 | Santa Rita Valley Middle  | L       | 3/4/20    | ng/L   | 4.3  | < 2   | < 2     | < 2     | 2.3   | 15     | < 2   | < 2  | 9.9  |
| 3S/1E 16C 4 | Santa Rita Valley Deep    | L       | 3/4/20    | ng/L   | 4.2  | < 2   | < 2     | < 2     | 2.3   | 15     | < 2   | < 2  | 8.6  |
| 3S/1E 16L 5 | Pleas 5                   | L       | 12/3/19   | ng/L   | 4.7  | < 1.8 | < 1.8   | 2.2     | 3.9   | 19     | < 1.8 | 3.3  | 21   |
| 3S/1E 16L 7 | Pleas 6                   | L       | 12/3/19   | ng/L   | 5    | < 1.8 | < 1.8   | 2.5     | 4.5   | 23     | < 1.8 | 3.6  | 22   |
| 3S/1E 18E 4 | Valley Trails II          | U       | 10/2/19*  | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | < 2    | < 2   | < 2  | < 2  |
| 3S/1E 19A10 | SFWD South (B)            | L       | 10/7/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | 3      | < 2   | < 2  | < 2  |
| 3S/1E 19A11 | SFWD North (A)            | L       | 10/7/20   | ng/L   | < 2  | < 2   | < 2     | < 2     | < 2   | < 2    | < 2   | < 2  | < 2  |
| 3S/1E 19C 4 | del valle & laguna        | U       | 10/2/19*  | ng/L   | 2.2  | < 2   | < 2     | < 2     | < 2   | 2.7    | < 2   | < 2  | 6.9  |
| 3S/1E 20B 2 | Fairgrounds Potable       | L       | 12/11/19  | ng/L   | 2.9  | < 2   | < 2     | < 2     | < 2   | 8.6    | < 2   | < 2  | 5.7  |

#### **Municipal Wells are Bold**

- = Not Analyzed

\* = Sampled in 2020 WY, but included in 2019 Report U=Upper; L=Lower; D=Deep

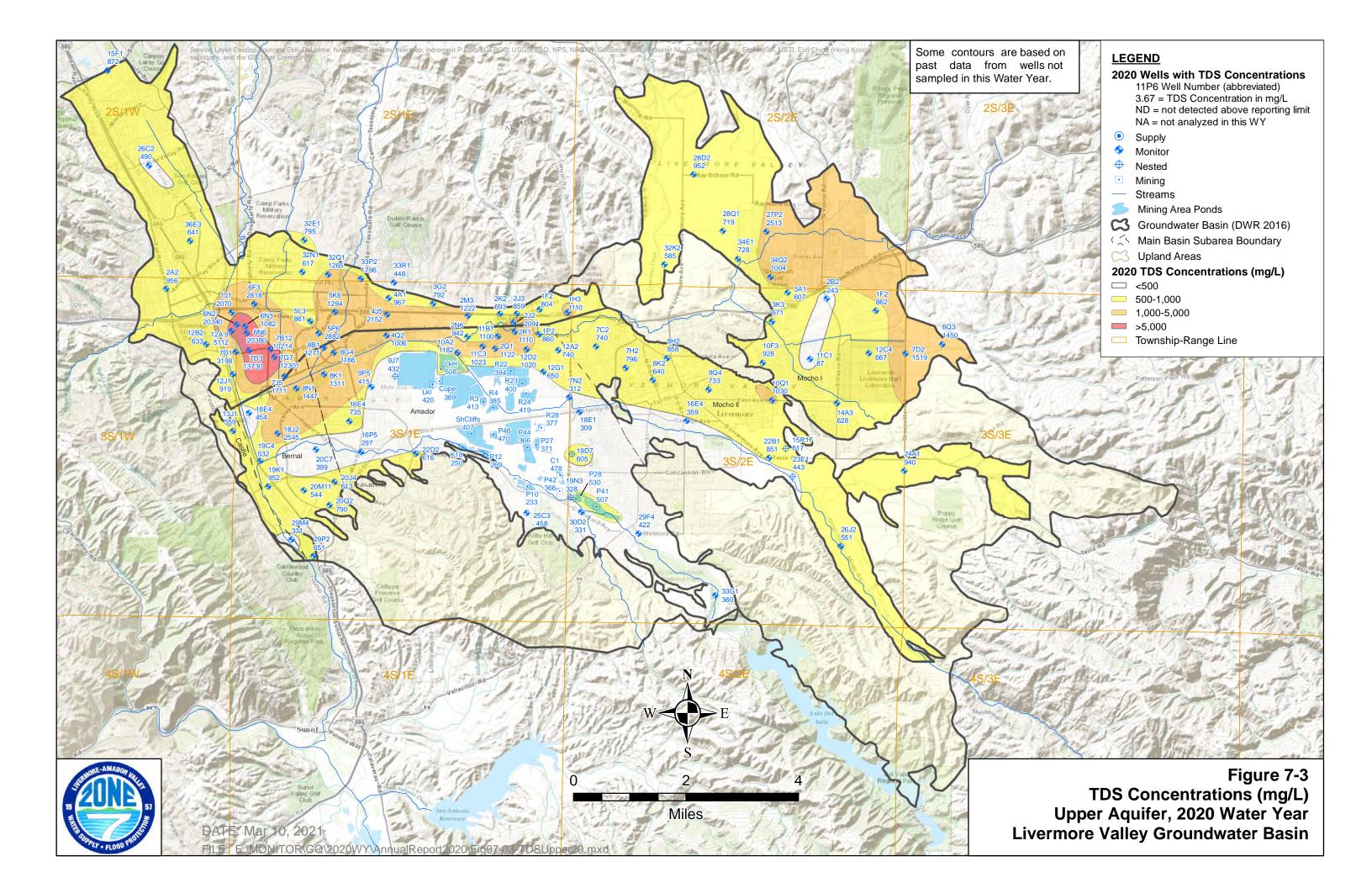
Table 7-3

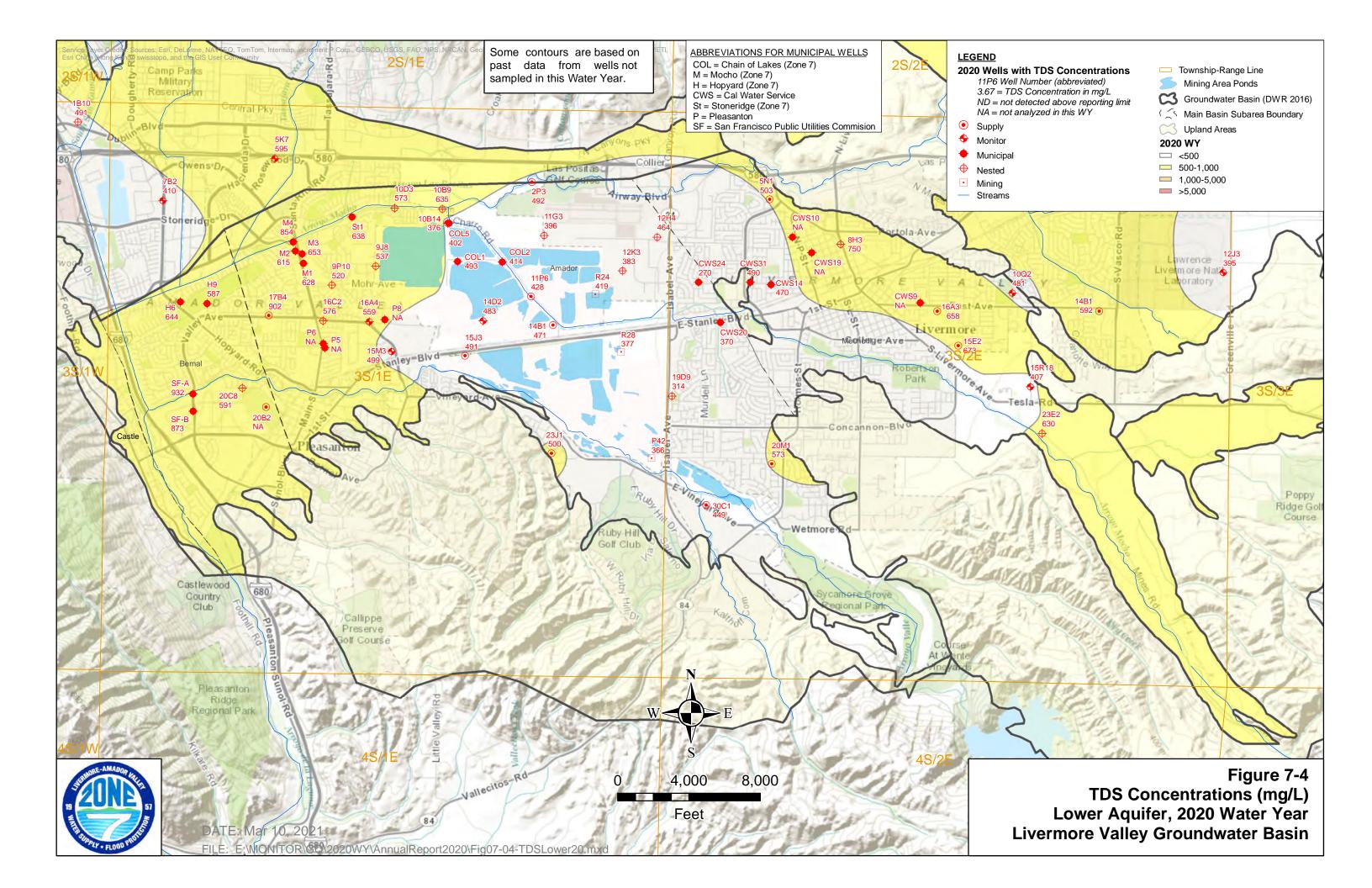

Page 1 of 2

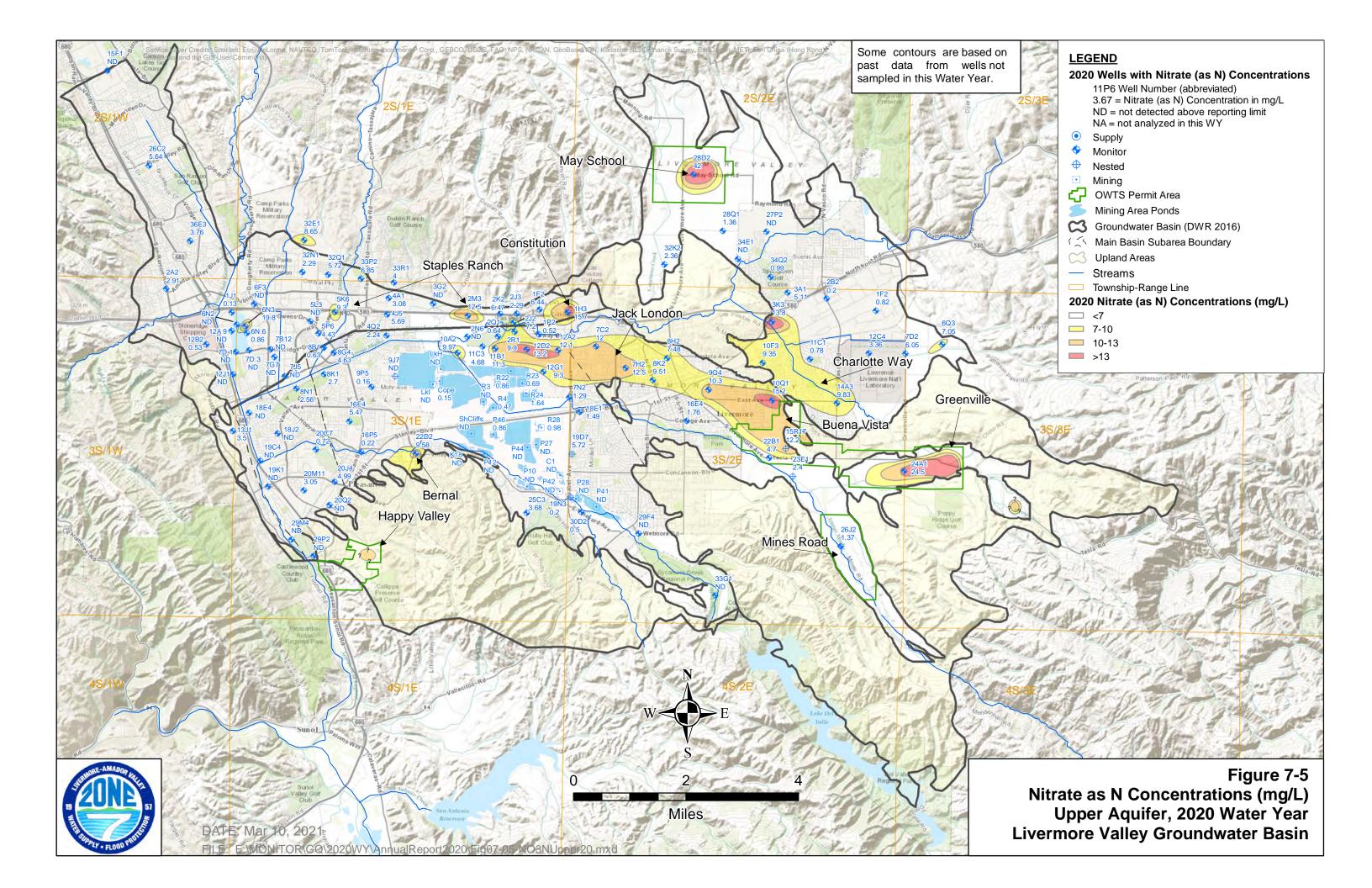


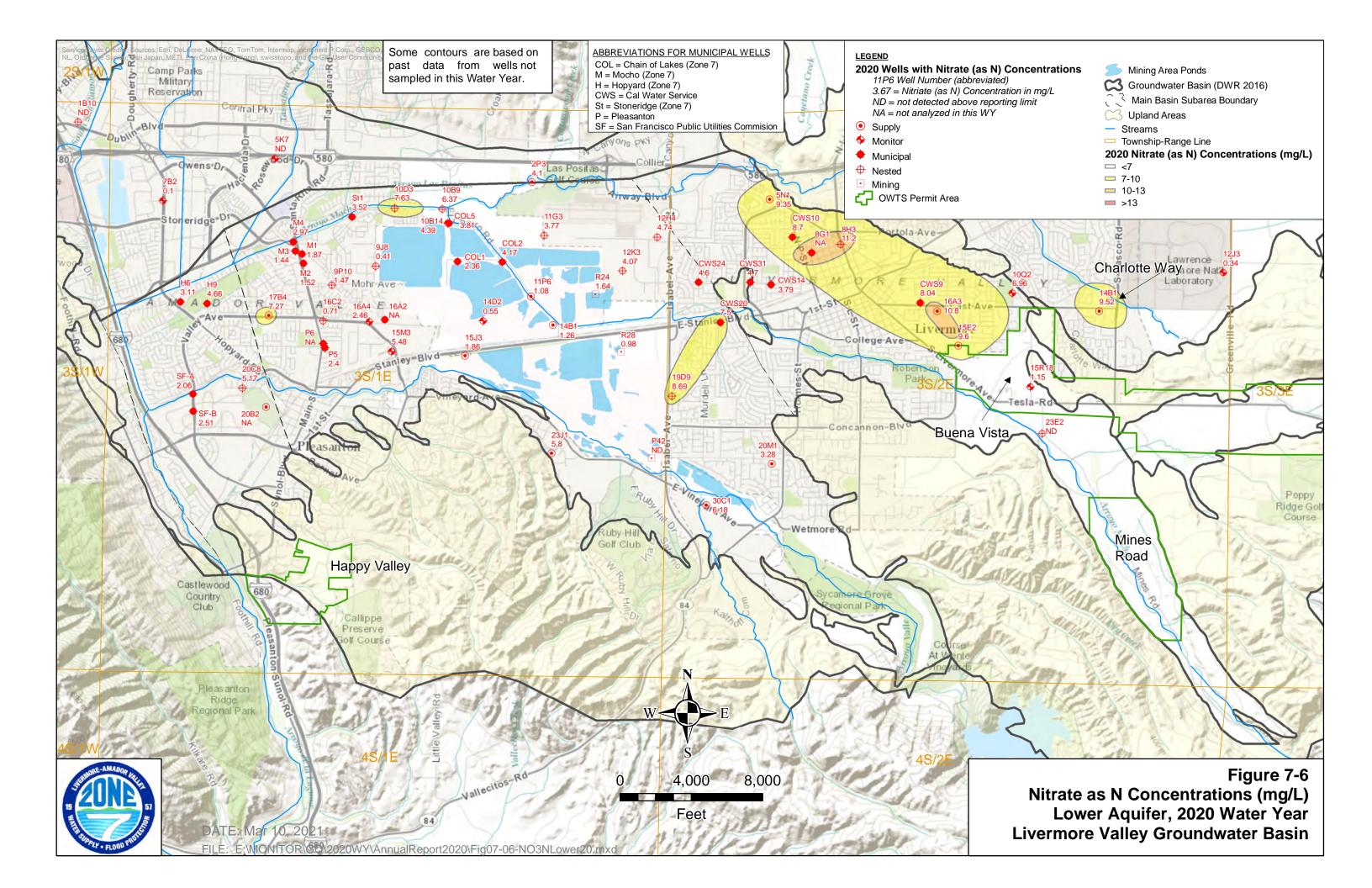
### TABLE 7-3 WATER QUALITY RESULTS FOR PFAS 2020 WATER YEAR

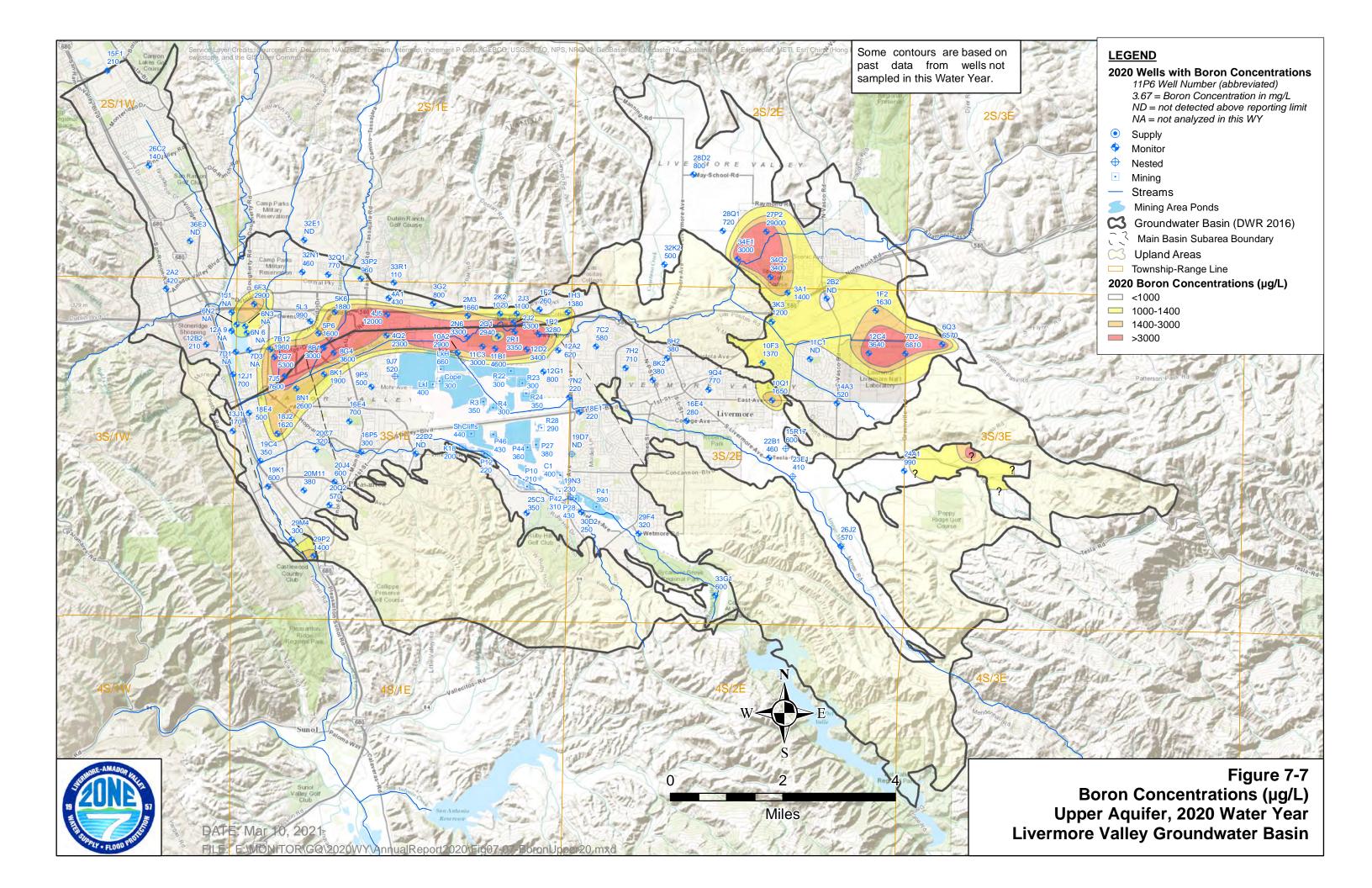

### (Only PFAS Compounds with detected concentrations shown)

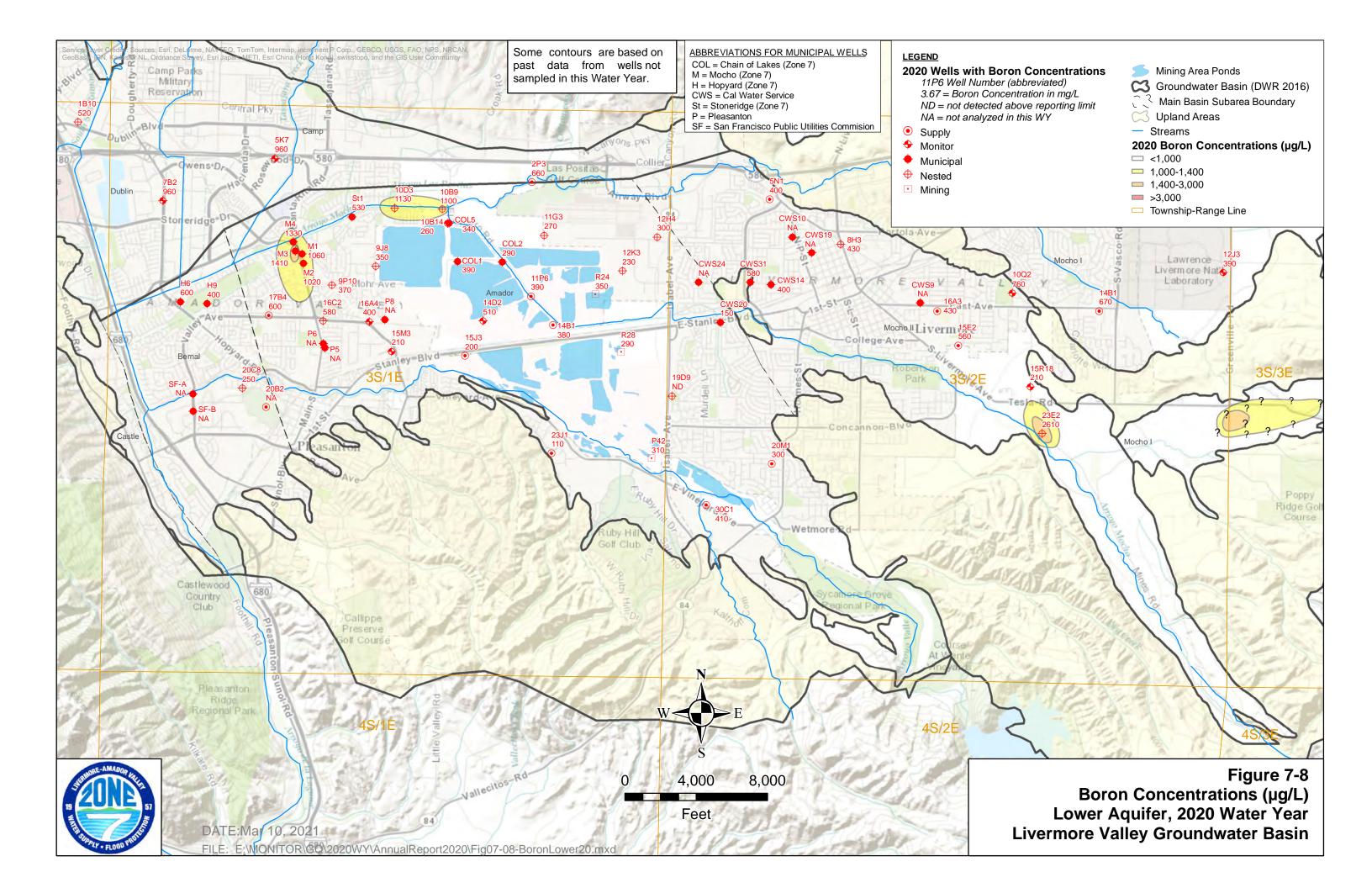

| Well        | Well Name            | Aquifer | Sampled | Units | PFBS  | PFDA  | PFDoA | PFHpA | PFHxA | PFHxS | PFNA  | PFOA  | PFOS  |
|-------------|----------------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3S/1E 20B 2 | Fairgrounds Potable  | L       | 5/18/20 | ng/L  | 3.1   | < 2   | < 2   | < 2   | < 2   | 11    | < 2   | < 2   | 6.2   |
| 3S/1E 20B 2 | Fairgrounds Potable  | L       | 7/29/20 | ng/L  | 3     | < 2   | < 2   | < 2   | < 2   | 9.2   | < 2   | < 2   | 4.3   |
| 3S/2E 7P 3  | CWS 24               | L       | 5/20/20 | ug/L  | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   |
| 3S/2E 7R 3  | CWS 31               | L       | 5/19/20 | ug/L  | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | 5     |
| 3S/2E 8G 1  | CWS 19               | L       | 1/30/20 | ug/L  | 5     | < 2   | < 2   | < 2   | 5     | 10    | < 2   | 6     | 21    |
| 3S/2E 8N 2  | CWS 14               | L       | 5/7/20  | ug/L  | < 2   | < 2   | < 2   | < 2   | < 2   | 3     | < 2   | < 2   | 5     |
| 3S/2E 9Q 1  | CWS 9                | L       | 5/7/20  | ug/L  | 5     | < 2   | < 2   | < 2   | 4     | 9     | < 2   | 4     | 16    |
| 3S/2E 9Q 1  | CWS 9                | L       | 7/2/20  | ug/L  | 5     | < 2   | < 2   | < 2   | 3     | 9     | < 2   | 4     | 16    |
| 3S/2E 18B 1 | CWS 20               | L       | 5/7/20  | ug/L  | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | 4     | 4     |
| 3S/2E 19D 7 | Isabel Shallow       | U       | 2/13/20 | ng/L  | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 |
| 3S/2E 19D 8 | Isabel Middle 1      | L       | 2/13/20 | ng/L  | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | 2.9   |
| 3S/2E 19D 9 | Isabel Middle 2      | L       | 2/13/20 | ng/L  | < 2.0 | < 2.0 | < 2.0 | < 2.0 | 4.2   | 2.8   | < 2.0 | 3.3   | 13    |
| 3S/2E 19D10 | Isabel Deep          | L       | 2/13/20 | ng/L  | 3.2   | < 2.0 | < 2.0 | 3.6   | 9     | 4.4   | < 2.0 | 7.1   | 10    |
| 3S/2E 19N 3 | Shallow Cemex Nested | U       | 5/20/20 | ng/L  | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   |
| 3S/2E 19N 4 | Deep Cemex Nested    | L       | 5/20/20 | ng/L  | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | < 2   | 4     |

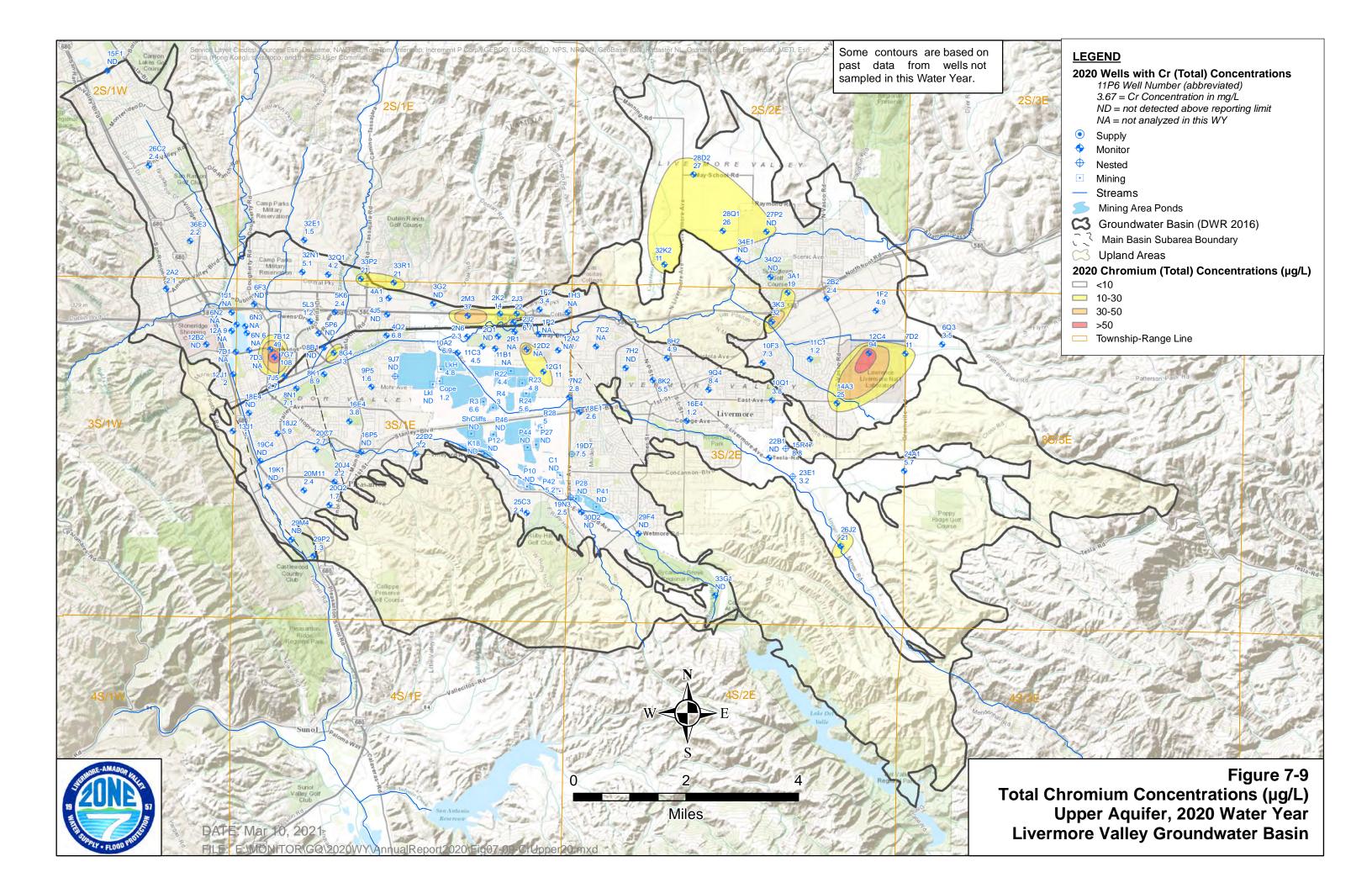


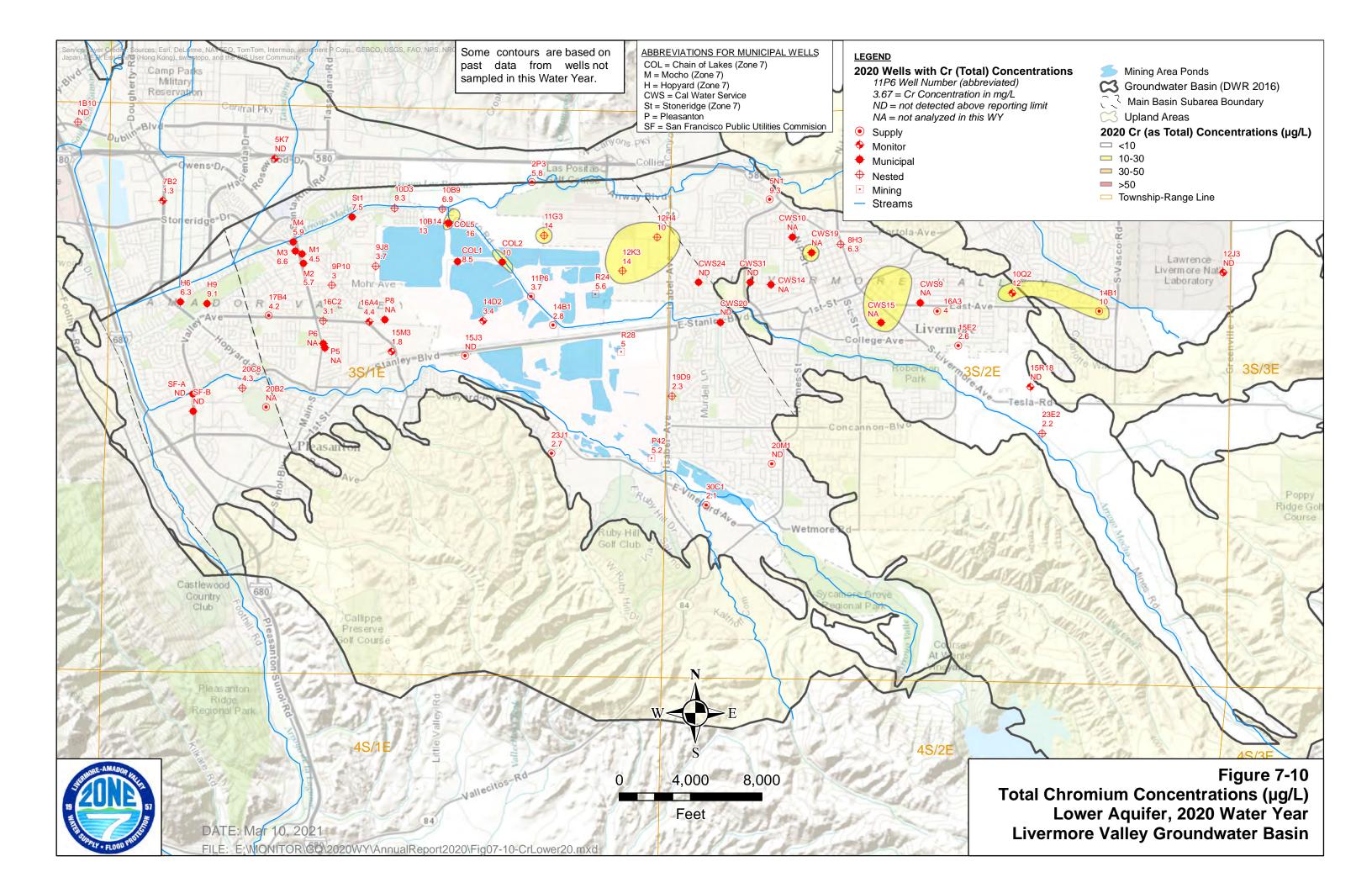



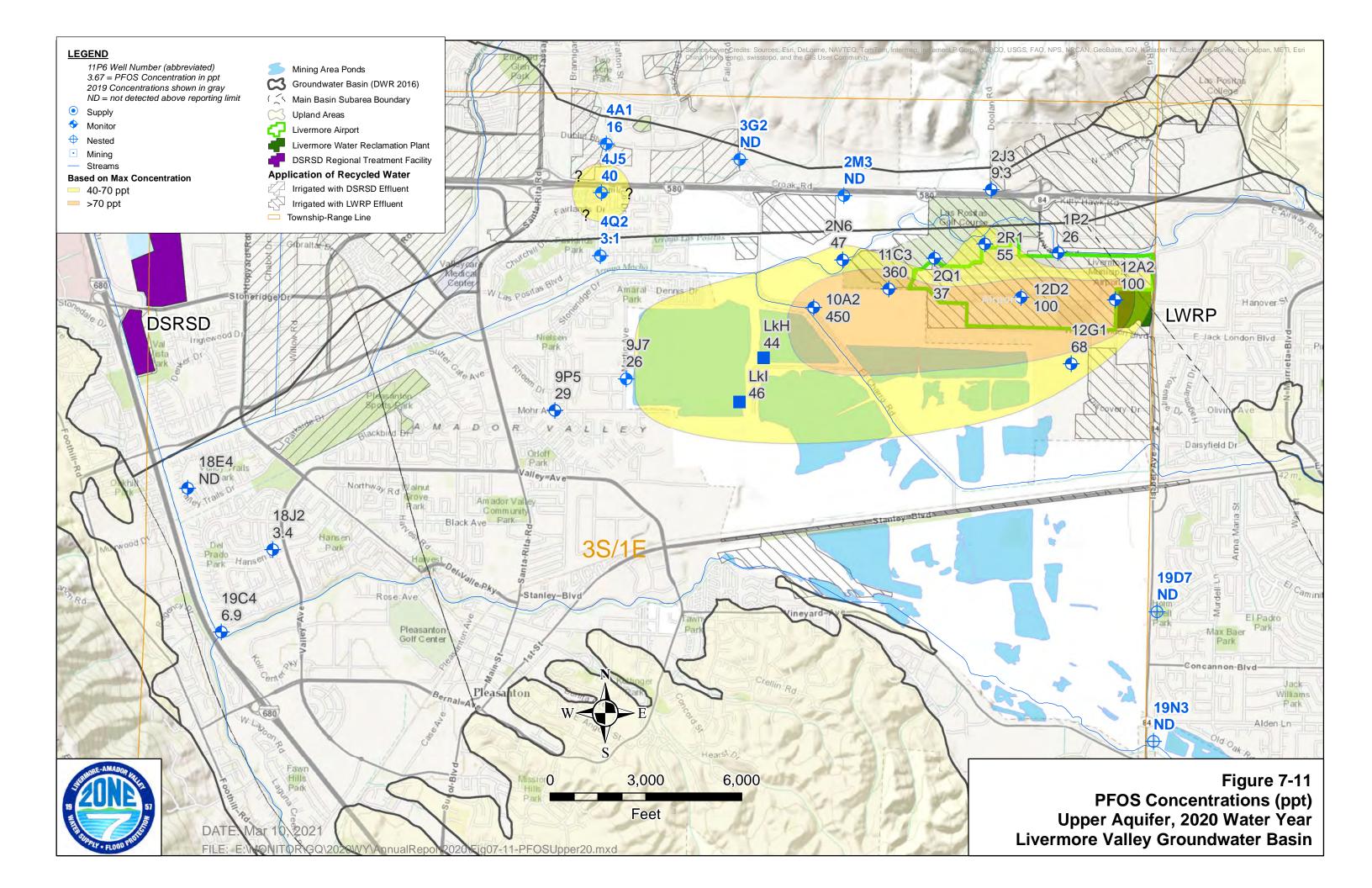


### FIGURE 7-2 TDS CONCENTRATIONS IN KEY WELLS 1974 TO 2020 WATER YEARS

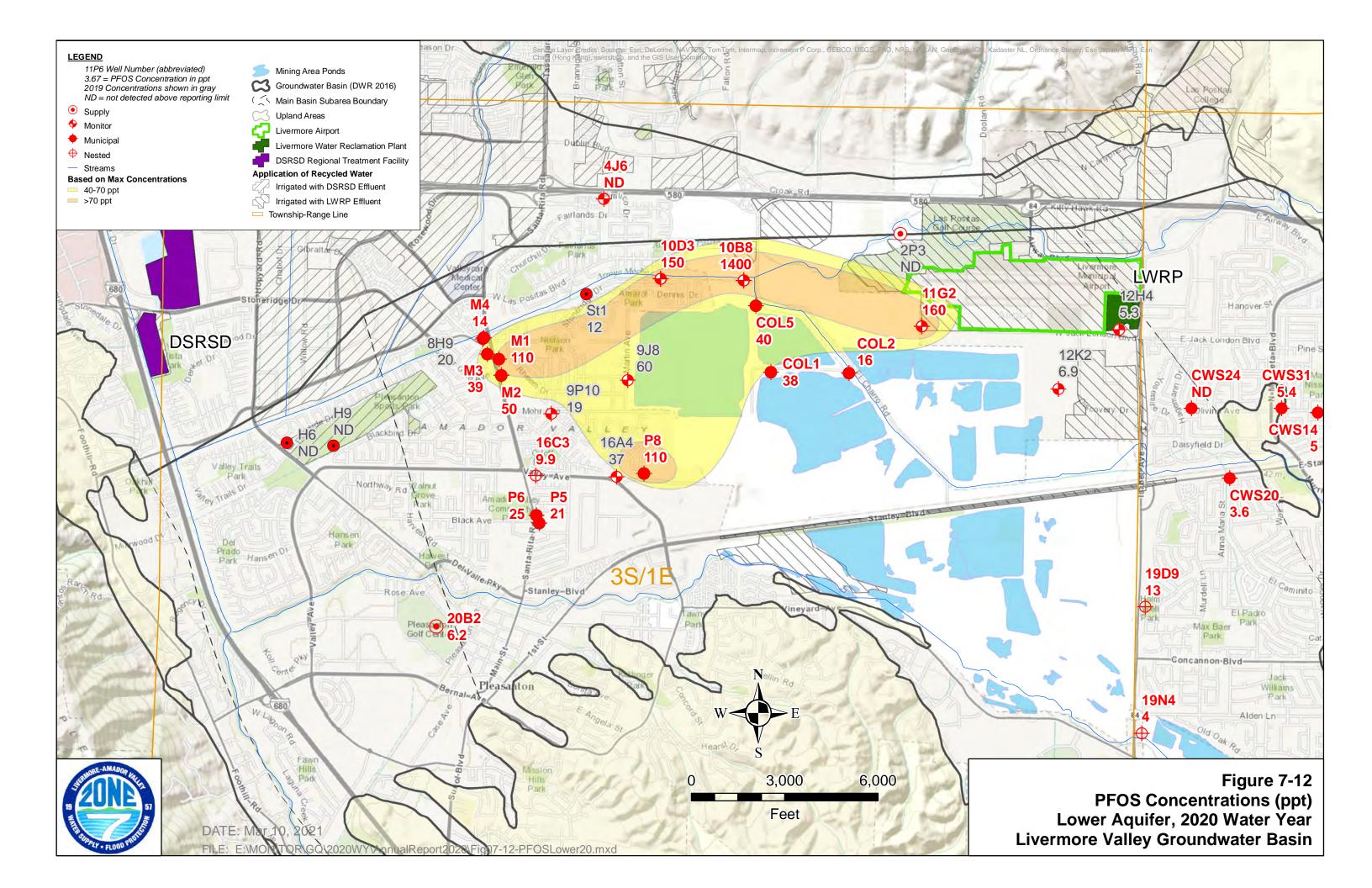


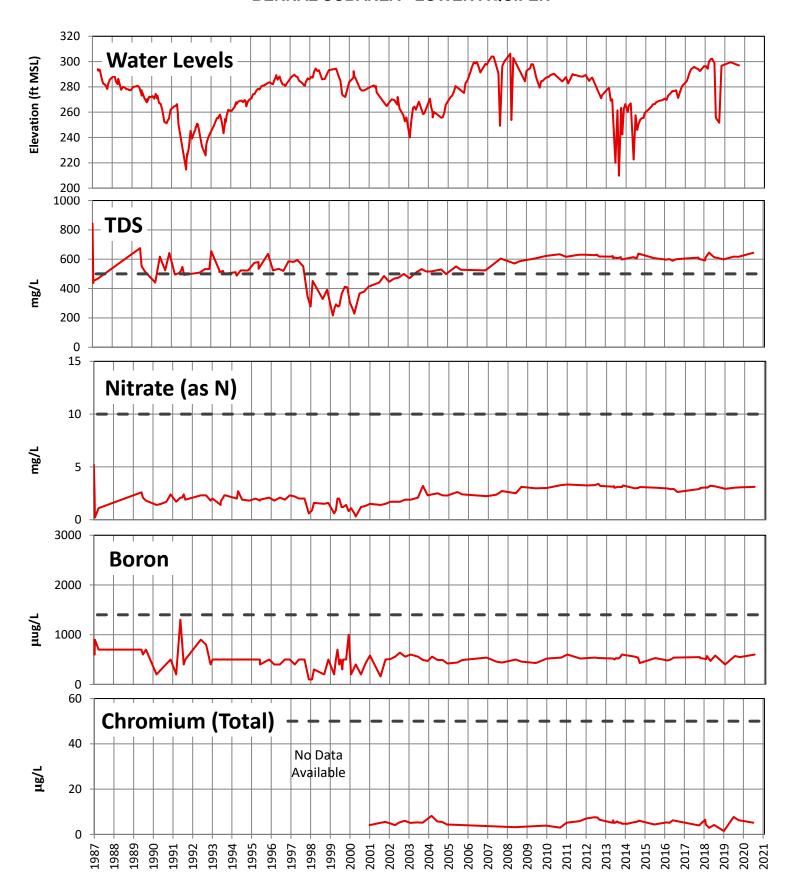



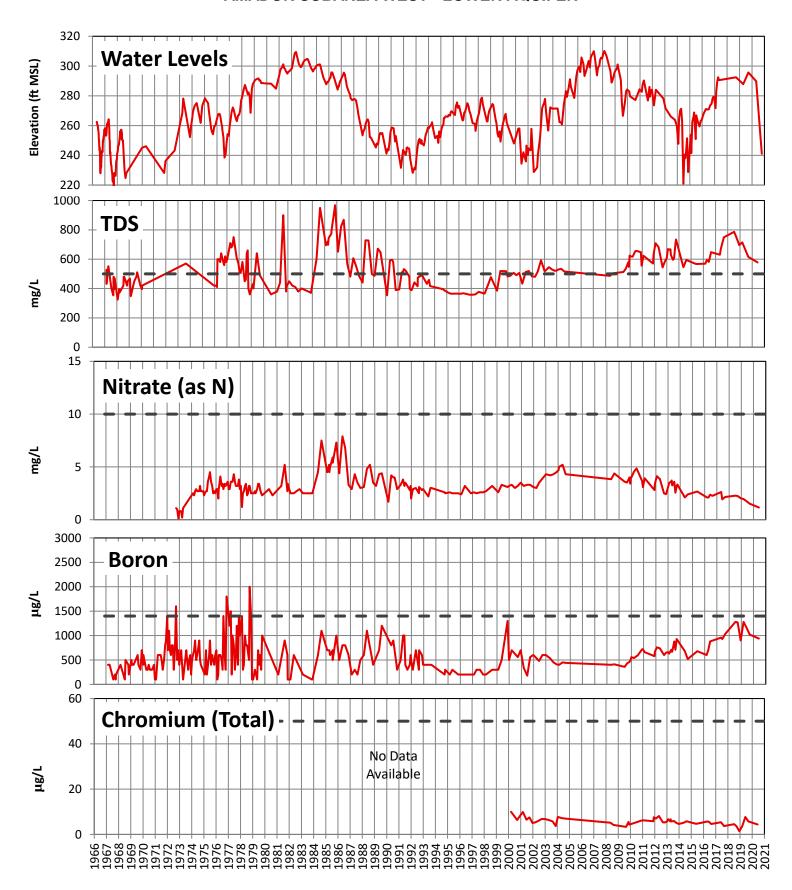




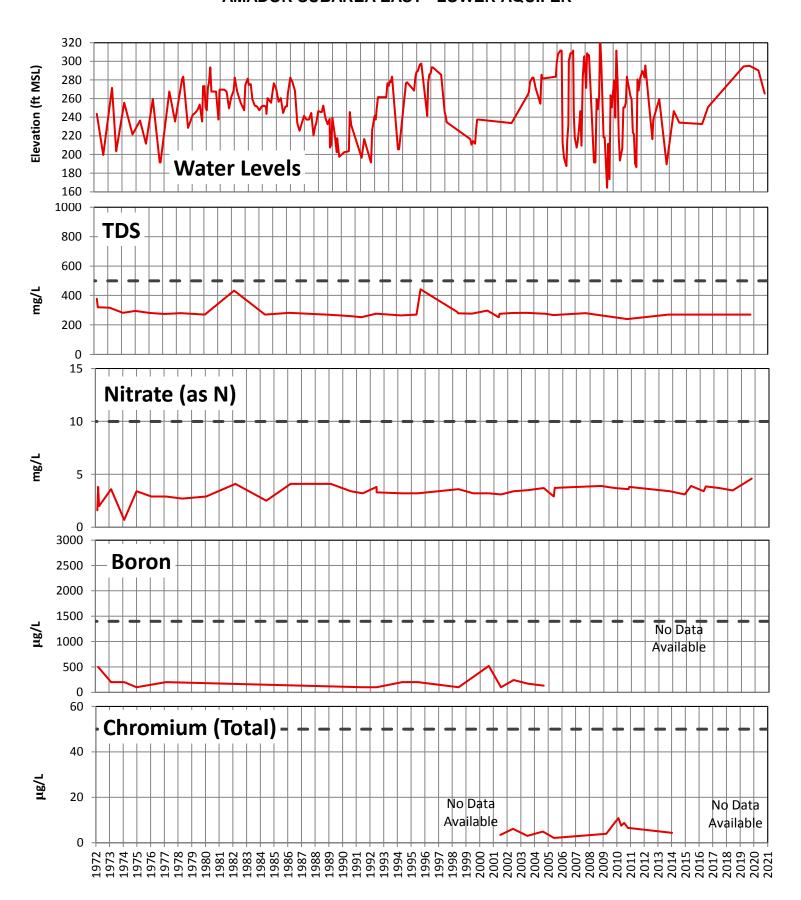




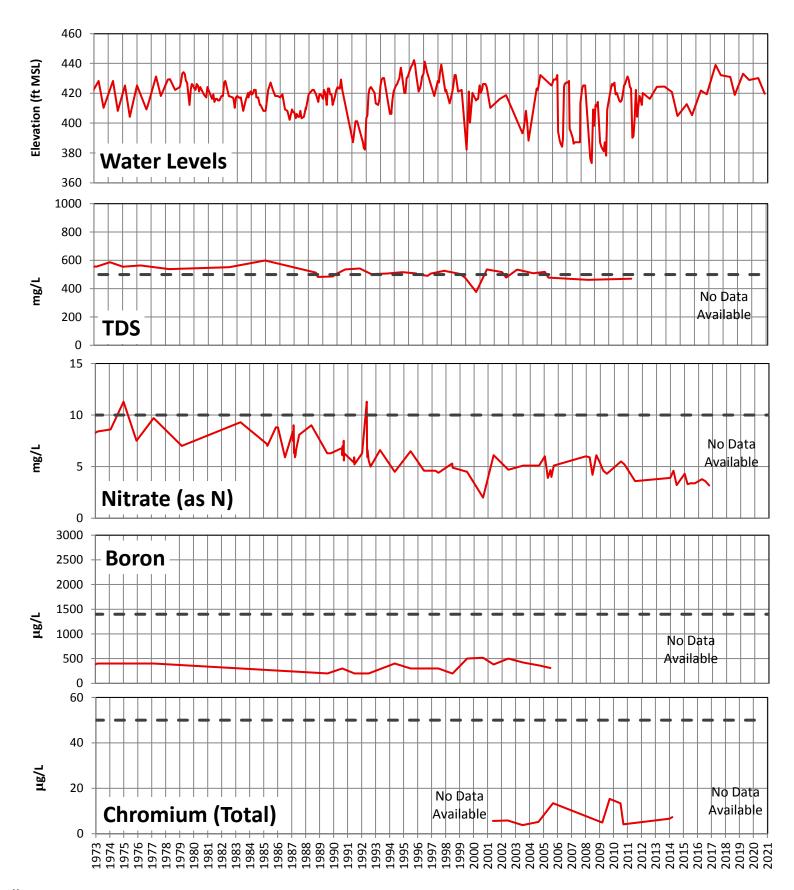

# FIGURE 7-13 HYDRO-CHEMO GRAPH FOR 3S/1E 18A 6 (HOPYARD 6) 1987 to 2020 WATER YEARS BERNAL SUBAREA - LOWER AQUIFER






# FIGURE 7-14 HYDRO-CHEMO GRAPH FOR 3S/1E 9M 3 (Mocho 2) 1967 to 2020 WATER YEARS AMADOR SUBAREA WEST - LOWER AQUIFER






# FIGURE 7-15 HYDRO-CHEMO GRAPH FOR 3S/2E 7P 3 (CWS 24) 1973 to 2020 WATER YEARS AMADOR SUBAREA EAST - LOWER AQUIFER





## FIGURE 7-16 HYDRO-CHEMO GRAPH FOR 3S/2E 8P 1 (CWS 8) 1974 to 2020 WATER YEARS MOCHO II SUBAREA - LOWER AQUIFER



### 8 Land Surface Elevation

### 8.1 Program Description

### 8.1.1 Monitoring Network

Background information regarding Zone 7's land surface elevation monitoring is provided in *Section 2.3.9, Land Subsidence,* of the Alternative GSP. This section describes the details of Zone 7's ongoing Land Surface Elevation Monitoring Program for subsidence and the results for the 2020 WY. Up until the 2018 WY, Zone 7 contracted with a licensed land surveyor to measure land surface elevations within the Main Basin boundary twice per year. The program included a network of approximately 40 elevation benchmarks encompassing Zone 7's production wellfields and spanning the Bernal and Amador Subareas within the Main Basin. The program also included reference benchmarks located in bedrock outside of the alluvial basin.

In the 2016 WY, Zone 7 contracted with TRE Altamira (TRE) to evaluate Interferometric Synthetic Aperture Radar (InSAR) as an alternative to land surveying for subsidence monitoring. TRE analyzed InSAR data from three different satellites over a 24-year period (from 1992 to 2016) which included approximately 120 satellite images with between 415 and 1,202 measuring points per square mile. Each measuring point contains a deformation time series, including cumulative displacement, average deformation rate, acceleration, and seasonal amplitude. The study results correlated well with topographic surface measurements taken by land surveys within the same period. An added benefit of the InSAR dataset was that it included a larger area (i.e., the entire Main Basin) than the land surveying. The resulting TRE 2016 report was included in Zone 7's Alternative GSP (Attachment I).

Starting in the 2019 WY, instead of continuing the land surveying program, Zone 7 used InSAR for monitoring land subsidence. For this study, TRE included all the Livermore Valley Groundwater Basin area, including the entire Main Basin, the Fringe, and the Upland Areas. The results of TRE's study are presented in the resulting report (see *Appendix 8-1*) and discussed below.

### 8.1.2 Program Changes for the 2020 Water Year

For the 2020 WY, Zone 7 contracted again with TRE to perform an analysis of satellite data for the Livermore Valley collected since the 2016 WY.

Zone 7 Water Agency 8 Land Surface Elevation

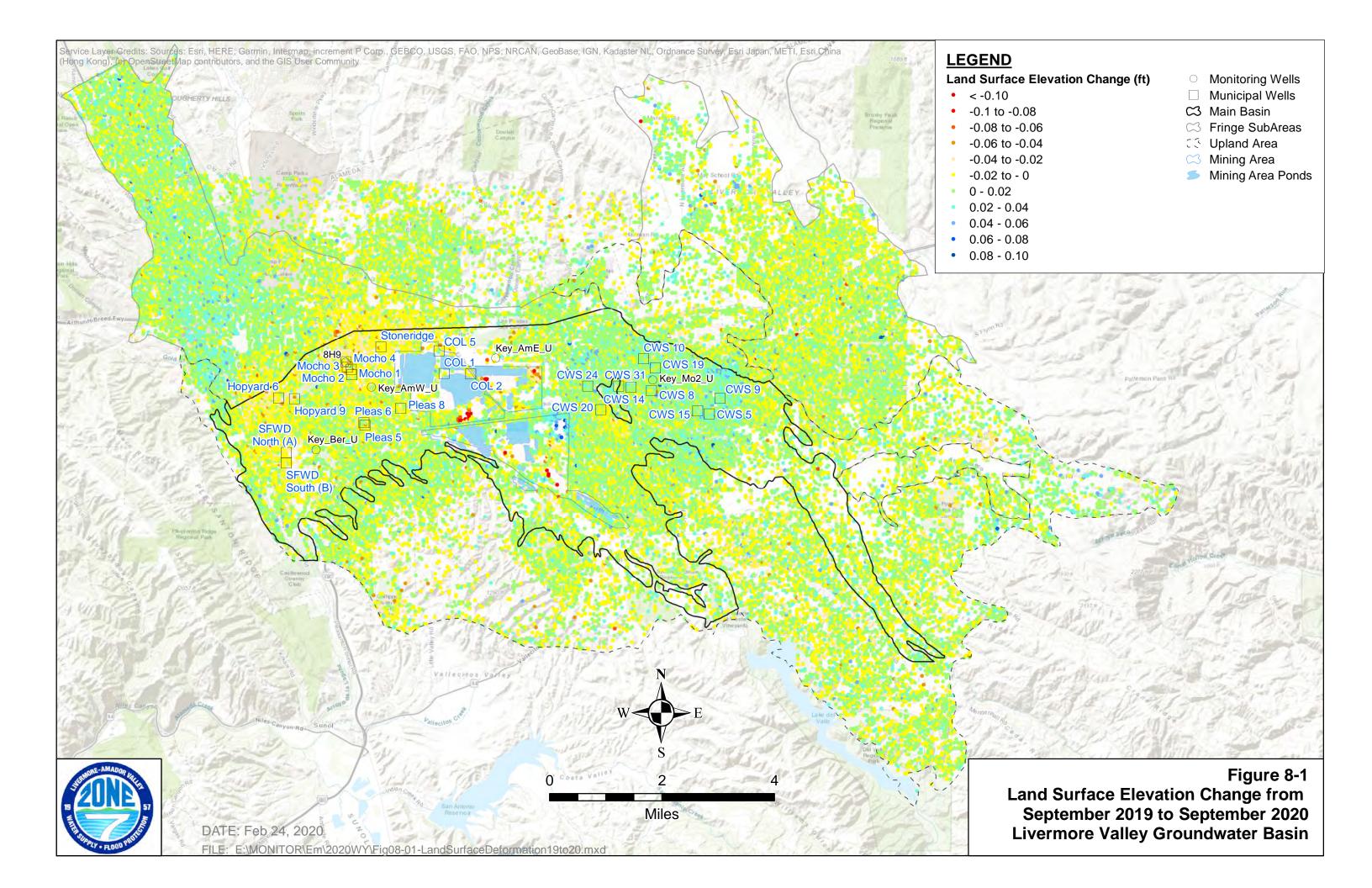

### 8.2 Results for the 2020 Water Year

Figure 8-1 shows the extent of the InSAR study performed this year, the locations of the selected InSAR points, and the land surface deformation from the 2019 WY to 2020 WY. The TRE report (Appendix 8-1) includes the following additional figures and tables:

- Figures 10 and 11 (pages 16 and 17) show the cumulative land surface elevation change for the current water year.
- Figures 13 through 15 (pages 19 to 21) show graphs of ground surface elevation and groundwater elevation.

In general, observed land surface elevation changes between September 2019 to September 2020 generally rose or dropped within +/- 0.04 feet (*Figure 8-1*), which is within the range Zone 7 considers to be "elastic deformation" (i.e., rebounds to the original elevation when groundwater levels return to previous levels). The following items summarize other findings from the InSAR analysis:

- Several areas in the mining area appear to have dropped more than 0.10 feet (indicated by red dots in *Figure 8-1*) or rose over 0.25 inches (indicated by blue dots). These are likely due to changes in excavation and additional grading activities, and not from land subsidence.
- Ground surface elevations near Zone 7's Mocho Wellfield, dropped up to approximately 0.04 feet. This change is consistent with elastic, ground-surface elevation changes caused by previous drops in groundwater elevations.



#### **APPENDIX 8-1**

InSAR Analysis of Ground Deformation over Livermore, 2014 December-2019 September



### InSAR Analysis of Ground Displacement over Livermore for the period 2014 - 2020

**Technical Report** 

February 2021





### **Report Specifications**

| Client:    | Zone 7 Water Agency      |  |  |  |  |
|------------|--------------------------|--|--|--|--|
| Attention: | Tom Rooze                |  |  |  |  |
| Address:   | 100 N. Canyons Parkway   |  |  |  |  |
| Address.   | Livermore, CA 94551-9486 |  |  |  |  |
|            |                          |  |  |  |  |
|            |                          |  |  |  |  |
|            |                          |  |  |  |  |

Reference:

Title: InSAR Analysis of Ground Displacement over Livermore

TRE ALTAMIRA Delivery Reference: JO20-1257-CA REP 1.0

Client Reference (PO):

Prepared by:TRE ALTAMIRA Inc.Author(s):Vicky HsiaoVerified by:Giacomo FalorniApproved by:Giacomo FalorniDate:19 Feb 2021Version:1.3



#### **Executive Summary**

This report describes the results of the InSAR ground displacement analysis over Livermore covering the period 13 March 2015 to 30 September 2020. TRE Altamira used its SqueeSAR® algorithm to process Sentinel satellite imagery and produce 2-D ground displacement measurements that were then calibrated using GNSS stations in the area. This report provides an update to the displacement measurements provided in 2019.

The following points summarize the key findings:

- Localized subsidence is detected in 2020
  - An interpolated map of annual (September to September) ground displacement shows over -0.25 inches of subsidence from 2019 to 2020 in the Main Basin.
- There appears to be a weak correlation between variations in groundwater levels at Key\_AMW\_U,
   Key\_Bern\_U and well 3S1E08H009, and ground displacement.
- Generalized westward movement is present throughout the AOI.

## **Confidentiality disclaimer**

This document contains confidential proprietary information and is intended solely for the recipient. The contents of this document, including information related to TRE ALTAMIRA methodology and know-how, may not be disclosed in whole or in part to any third party by any means or used for any other purpose without the express written permission of TRE ALTAMIRA.



## **Table of Contents**

| Execu  | utive Summary                          | 2         |
|--------|----------------------------------------|-----------|
| Acro   | nyms and Abbreviations                 | 4         |
| 1.     | Introduction                           | 5         |
| 1.1.   | Area of Interest                       | 5         |
| 2.     | Radar Data                             | 6         |
| 3.     | Overview of Results                    | 7         |
| 3.1.   | SqueeSAR Analysis                      | 7         |
| 3.2.   | 2-D and Line-of-Sight Results          | .0        |
| 4.     | Observations 1                         | .6        |
| 4.1.   | Annual Ground Displacement             | .6        |
| 4.2.   | Comparison with Groundwater Levels     | .8        |
| 5.     | Summary and Recommendations            | !3        |
| Appe   | endix 1: Delivered Files               | !4        |
| List o | f Deliverables                         | 24        |
| Datal  | base Structure                         | 25        |
| TREm   | naps2                                  | 26        |
| Appe   | endix 2: Additional Radar Data Details | <b>!7</b> |
| Appe   | endix 3: Calibration Methodology       | 29        |



# **Acronyms and Abbreviations**

| AOI       | Area of Interest                                |
|-----------|-------------------------------------------------|
| ATS       | Average Time Series                             |
| CS        | Cross-Section                                   |
| cRTS      | Common Time Series of Residuals                 |
| DEM       | Digital Elevation Model                         |
| DInSAR    | Differential Interferometric SAR                |
| DS        | Distributed Scatterer(s)                        |
| ENVISAT   | ENVISAT Satellite                               |
| ERS       | European Remote Sensing Satellite               |
| GIS       | Geographic Information System                   |
| GNSS      | Global Navigation Satellite System              |
| InSAR     | Interferometric Synthetic Aperture Radar        |
| LOS       | Line of Sight                                   |
| LTS       | LOS Time Series                                 |
| MP        | Measurement Point                               |
| PS        | Permanent Scatterer(s)                          |
| SAR       | Synthetic Aperture Radar                        |
| SNT       | Sentinel Satellite                              |
| SqueeSAR® | The most recent InSAR algorithm patented by TRE |
| TS        | Time Series                                     |
| UNAVCO    | UNAVCO Data Center                              |
|           |                                                 |



#### 1. Introduction

TRE ALTAMIRA Inc. (TRE) has been contracted by the Zone 7 Water Agency (Zone 7) to provide a 2-D SqueeSAR ground displacement update over the Livermore and Pleasanton areas. The InSAR study includes:

- A historical study using LOS ERS, Envisat and Sentinel satellite imagery covering the periods 1992 –
   2000, 2003 2010, and 2015 2016, respectively [Completed in 2016].
- 2019 Annual InSAR monitoring using 2D Sentinel satellite imagery covering the periods 2015 2019 [Completed in 2019].
- 2020 Annual InSAR monitoring using 2D Sentinel satellite imagery covering the periods 2015 2020 [Current report].

#### 1.1. Area of Interest

The AOI for Livermore comprises urban as well as very dry, sparsely vegetated areas and covers approximately 121 square miles (Figure 1). The terrain is flat with moderate hills and presents conditions suitable for the application of InSAR.

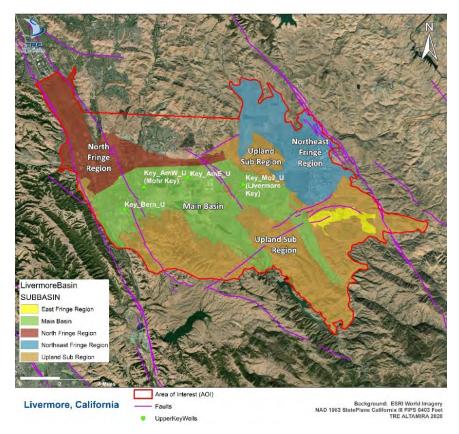



Figure 1: Livermore Area of Interest (AOI).



#### 2. Radar Data

Radar images were acquired over Livermore by the Sentinel (SNT) satellite from both descending (satellite travelling from north to south and imaging to the west) and ascending orbits (satellite travelling from south to north and imaging to the east), with a 12-day revisit frequency. A total of 190 images from the descending orbit, covering the period 31 December 2014 - 30 September 2020, and 171 from the ascending orbit, spanning 13 March 2015 - 30 September 2020, were processed (Table 1). The temporal distribution of the radar imagery is shown in Figure 2. Appendix 2 provides additional information on the satellite acquisition data details.

Table 1: Satellite acquisition parameters and image acquisition information.

| Satellite | Pixel<br>Resolution | Orbit      | LOS<br>Angle<br>(O) | Revisit Frequency                 | # of<br>Images | Date Range                   |
|-----------|---------------------|------------|---------------------|-----------------------------------|----------------|------------------------------|
| Continol  | 65 ft x 15<br>ft    | Descending | 42.3°               | 12 days<br>(6-day since Aug 2019) | 190            | 31 Dec 2014 –<br>30 Sep 2020 |
| Sentinel  |                     | Ascending  | 41.9°               | 12 days<br>(6-day since Jan 2019) | 171            | 13 Mar 2015 –<br>30 Sep 2020 |

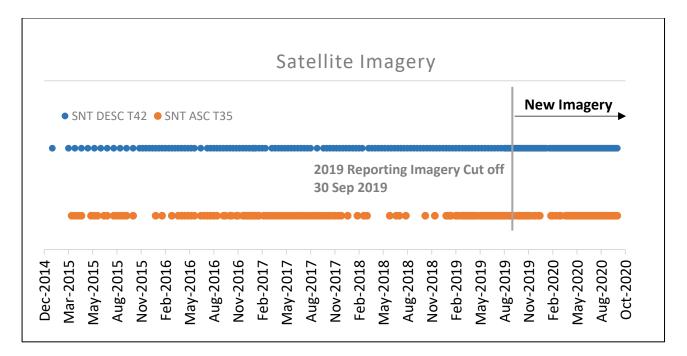



Figure 2: Temporal distribution of Sentinel ascending and descending radar images processed over Livermore.



#### 3. Overview of Results

This section provides a summary of the techniques used and a general overview of the results, while Section 4 further describes areas of displacement in more detail. Refer to the Handbook for further details the technology and techniques used.

#### 3.1. SqueeSAR Analysis

SqueeSAR identifies measurement points (MPs) from objects on the ground that display a stable return to the satellite in every image of an image archive. The MPs belong to two different families (Figure 3):

- Permanent Scatterers (PS): point-wise radar targets characterized by highly stable radar signal return (e.g. buildings, rocky outcrops, linear infrastructures, etc.)
- Distributed Scatterers (DS): patches of ground exhibiting a lower but homogenous radar signal return (e.g. rangeland, debris fields, arid areas, etc.). DS therefore refer to small areas covering several pixels rather than to a single target or object on the ground. For clarity of presentation and ease of interpretation, DS are represented as individual points.

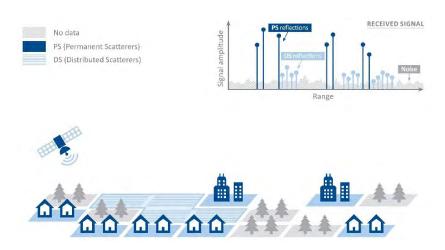



Figure 3: Schematic of PS and DS radar targets.

In InSAR analyses, all measurements are 1-D readings along the sensor's line-of-sight (LOS) as the true vector of displacement is projected onto the LOS. The same displacement will produce different readings when viewed from different angles (Figure 4). Negative values (red) indicate surface displacement away from the satellite, while positive values (blue) indicate surface displacement towards the satellite. The LOS displacement rates are calculated from a linear regression of the ground movement measured over the entire



period covered by the satellite images. Each measurement point corresponds to a Permanent Scatterer (PS) or a distributed scatterer (DS), and is color-coded according to its annual rate of movement and direction:

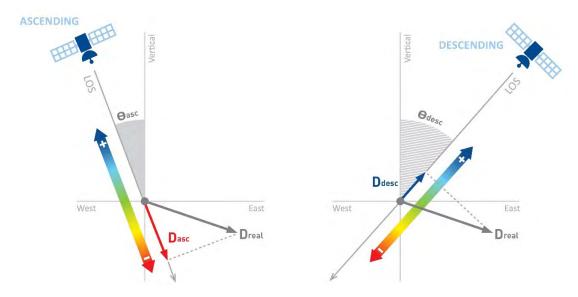



Figure 4: SqueeSAR measures the projection of real movement (D<sub>real</sub>) onto the LOS. The same real movement (D<sub>real</sub>) will produce a different value from a different LOS (different inclination or different acquisition geometry).

Displacement measurements obtained by the SqueeSAR algorithm are differential in space and time. Measurements are spatially related to the reference point, and temporally to the date of the first available satellite image. The reference point is assumed to be motionless and selected for its radar properties and motion behavior. Any seasonal trends present in the displacement data will be highlighted by the [SEASOM AMP] field, which estimates amplitude of the average annual displacement.

The trigonometric combination of SqueeSAR results obtained from different orbits (i.e. ascending and descending), over the same area and overlapping period, produces 2-D (vertical and east-west) measurements of ground movement (Figure 5) in a gridded format, as different measurement points are identified from the two orbits. MPs contained within a same cell are averaged and a new unique, derived time series of displacement is obtained for each grid cell.



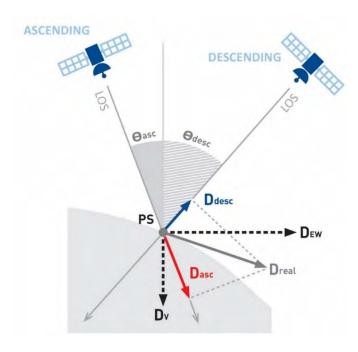



Figure 5: Example of motion decomposition combining ascending and descending acquisitions geometry.

As in the LOS analysis, average annual displacement rates in a 2-D analysis are calculated from a linear regression of the ground movement measured over the entire time interval covered by the analysis and all measurements are relative to a chosen reference point. Each point is color-coded according to the magnitude of movement:

- In a vertical data set, negative values (red) indicate downward surface displacement (i.e. subsidence), while positive values (blue) indicate upward surface displacement (i.e. uplift).
- In an east-west data set, negative values (red) indicate westward motion, while positive values (blue) indicate eastward motion.

The SqueeSAR data are calibrated using GNSS (Global Navigation Satellite System) stations P228 and P229 from UNAVCO. Appendix 3 provides additional information on the details for the calibration methodology.



#### 3.2. 2-D and Line-of-Sight Results

The LOS displacement rates, measured in inches per year, were computed from the ascending archive (13 March 2015 to 30 September 2020) and the descending archive (31 December 2014 to 30 September 2020). These LOS results were calibrated using GPS stations located within the area of interest to account for regional ground displacement trends (Figure 6, uncalibrated results in Figure 7). The calibrated LOS (Ascending and Descending) results were then used to produce calibrated 2-D (East-West and Vertical) measurements (Figure 8, uncalibrated results in Figure 9). The calibrated 2-D output highlights an area of uplift in the western portion of the AOI and generalized westward movement throughout the AOI. Further observations are described in Section 4.

Various parameters of the analysis, including measurement point density and precision, are indicated in Table 2. Note that more heavily vegetated areas may produce a lower density of measurement points. Furthermore, as the radar signal in these areas is weaker the displacement readings may be noisier.



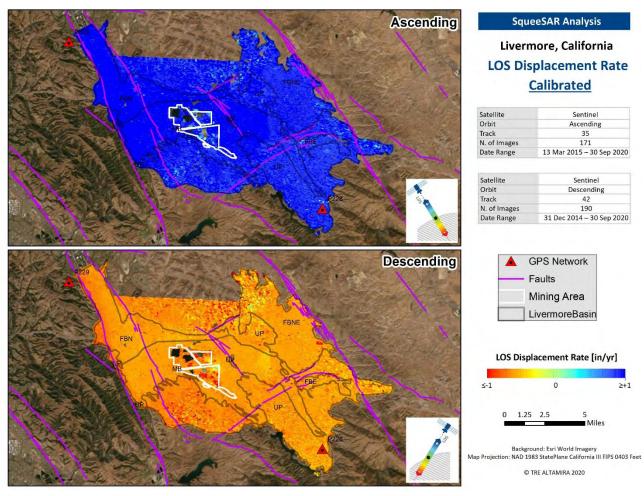



Figure 6: Ascending and Descending calibrated displacement rates over the AOI for the entire study period.



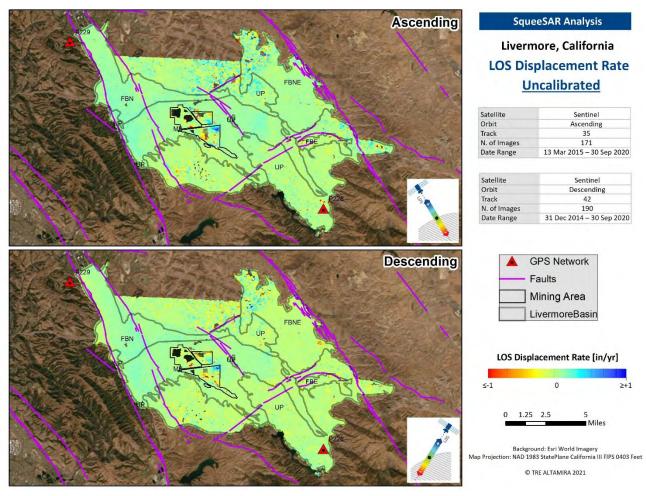



Figure 7: Ascending and Descending uncalibrated displacement rates over the AOI for the entire study period.



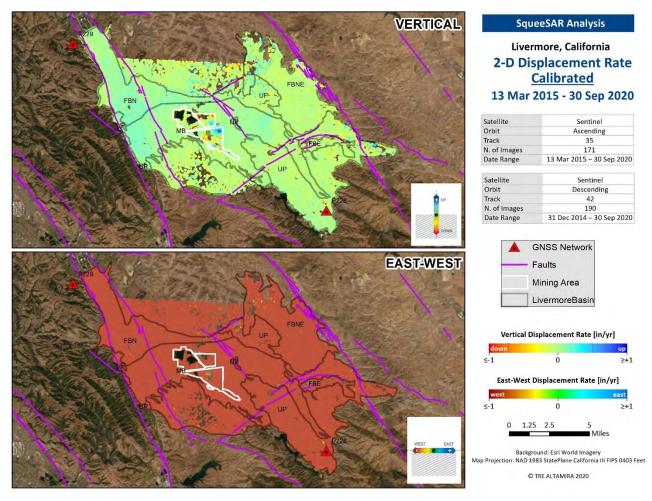



Figure 8: East-West and Vertical calibrated displacement rates over the AOI for the entire study period.



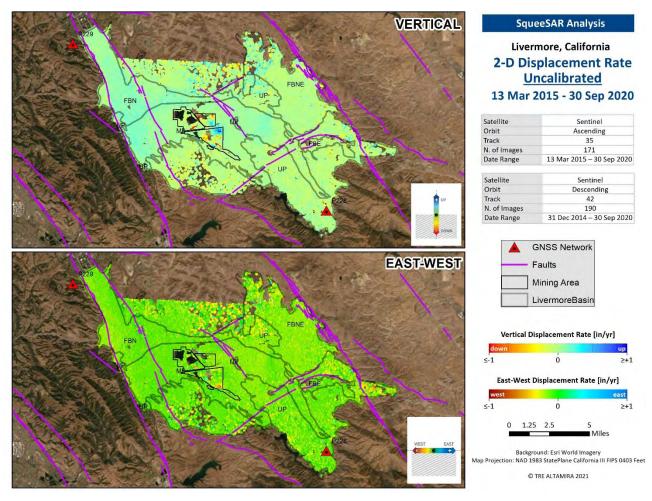



Figure 9: East-West and Vertical uncalibrated displacement rates over the AOI for the entire study period.



Table 2: Properties of the SqueeSAR analyses. \*Based on uncalibrated LOS and 2D results.

| Attribute                                            | Ascending                    | Descending                   | Vertical                    | East-West                    |
|------------------------------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| Date Range                                           | 13 Mar 2015 –<br>30 Sep 2020 | 31 Dec 2014 –<br>30 Sep 2020 | 13 Mar 2015–<br>30 Sep 2020 | 13 Mar 2015 –<br>30 Sep 2020 |
| N. of Images                                         | 171                          | 190                          | 246                         | 246                          |
| Total points (PS + DS)<br>Number of PS               | 120,467<br>82,924            | 124,723<br>86,639            | 41,665<br>/                 | 41,665<br>/                  |
| Number of DS  Average Point Density                  | 37,543                       | 38,084                       | /                           | /                            |
| (pts/mi²)                                            | 996                          | 1031                         | 344                         | 344                          |
| Average Displacement Rate Standard Deviation (in/yr) | ±0.02                        | ±0.01                        | ±0.02                       | ±0.02                        |
| Average Time Series Error Bar (in)                   | ±0.15                        | ±0.15                        | /                           | /                            |



#### 4. Observations

All data analyses in this section use <u>uncalibrated vertical data</u>, which is simply referred to as vertical data in the following.

#### 4.1. Annual Ground Displacement

Figure 10 and Figure 11 outlines annual (September to September) cumulative displacement within the AOI. Within the North Fringe Region sub-basin (FBN) and the northwest Main Basin (MB), uplift is observed between 2016 to 2019, while up to -0.25 inches of subsidence is detected in the Main Basin (within the mining area) in 2020.

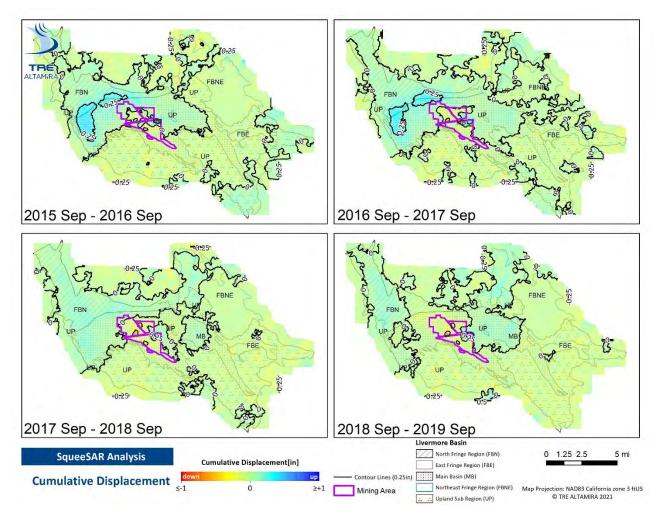



Figure 10: Interpolated map showing annual (September to September) ground displacement from 2015 to 2019. Contour lines have a 0.25-inch interval.



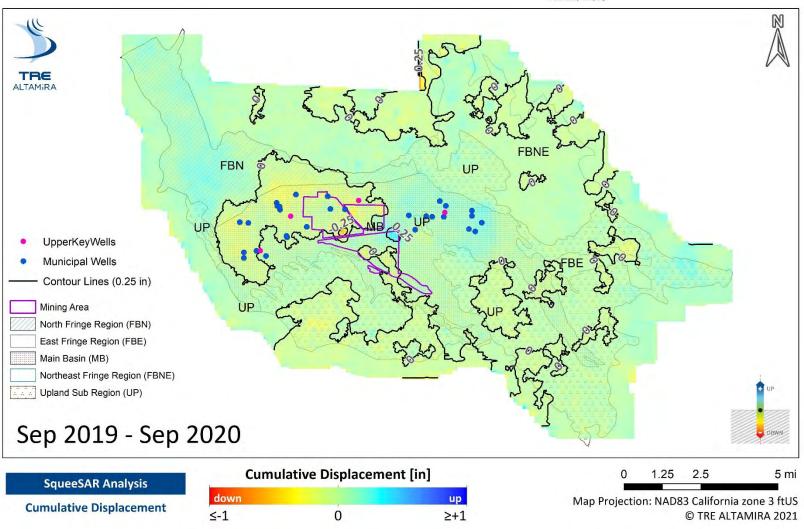



Figure 11: Interpolated map showing annual (September to September) ground displacement from 2019 to 2020. Contour lines have a 0.25-inch interval.



#### 4.2. Comparison with Groundwater Levels

The relationship between groundwater levels and ground displacement was investigated by comparing vertical measurements (within a 500 foot buffer of four key wells and well 3S1E08H009) with groundwater levels (Figure 12). The results may be weakly correlated, including decreased groundwater levels matching minor ground subsidence (at Key\_AMW\_U, Key\_Bern\_U and well 3S1E08H009) in the last year (Figure 13 and Figure 14). The measurement points within 500 ft buffer to the wells are listed in Table 3.

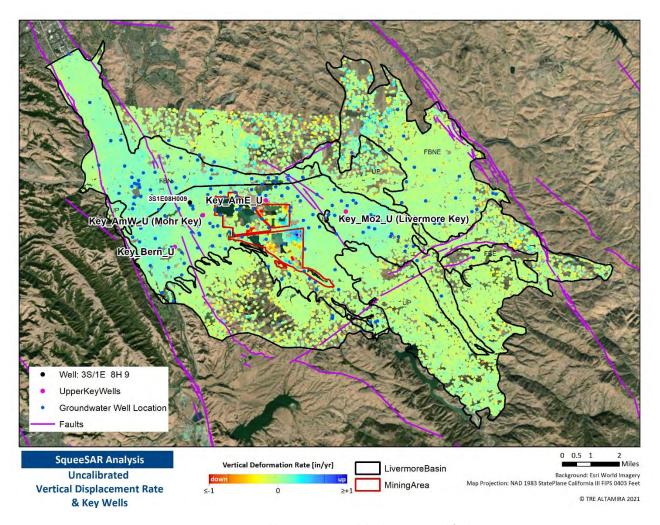



Figure 12: Key well locations, ground displacement and faults.



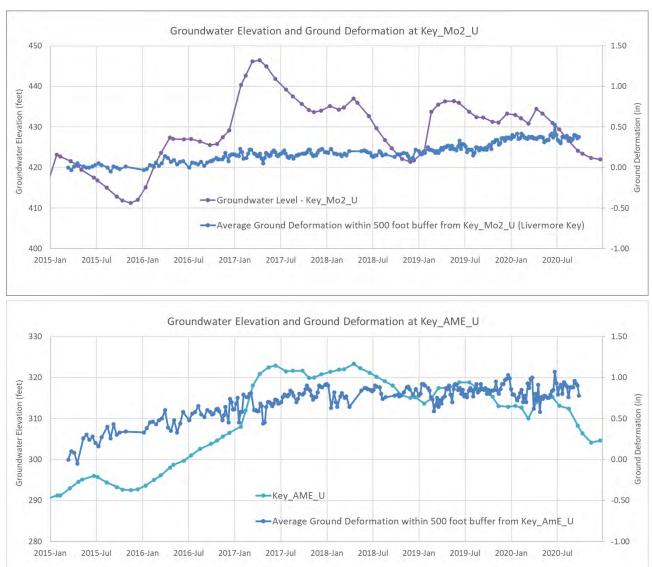



Figure 13: Groundwater elevation vs. ground displacement at Key\_Mo2\_U (top) and Key\_AME\_U (bottom).



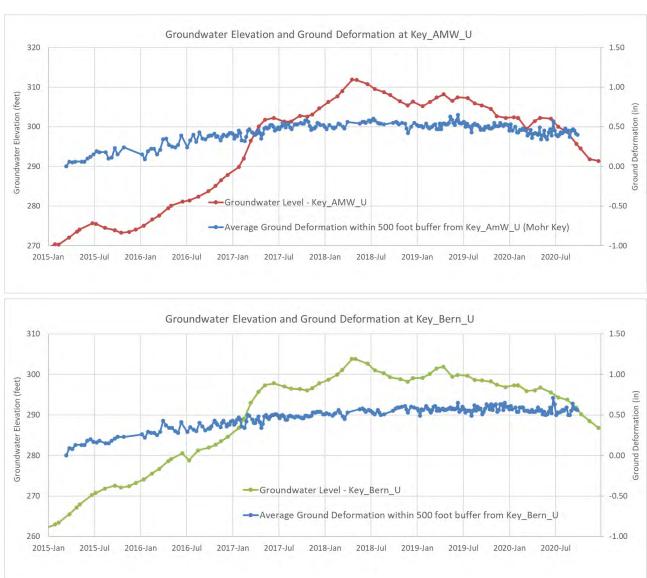



Figure 14: Groundwater elevation vs. ground displacement at Key\_AMW\_U (top) and Key\_Bern\_U (bottom).



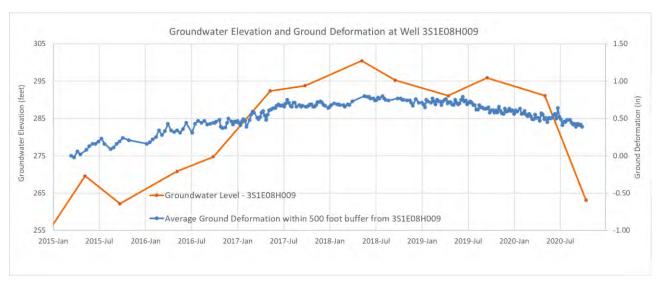



Figure 15: Groundwater elevation vs. ground displacement at well 3S1E08H009.



Table 3: Measurement points within 500-foot buffer to the wells.

| Key Wells    | Measurement point CODE                                                  |
|--------------|-------------------------------------------------------------------------|
|              | A3UQ07K, A3U4KLT, A3VBFTD, A3VWVF5, A3WIB0X, A3TJ502, A3UQ07M, A3VBFTE, |
| Key_Mo2_U    | A3VWVF6, A3WIB0Y, A3TJ503, A3U4KLV, A3VBFTF, A3VWVF7, A3WIB0Z, A3UQ070, |
|              | A3VBFTG, A3WIB10, A3U4KLX                                               |
| Key_AME_U    | A40OC6W, A43NI7S, A42GN0B, A4322M3                                      |
| Key AMW U    | A3RQU27, A3QJYUO, A3RQU28, A3SC9O0, A3SXP9T, A3PYJ8Y, A3RQU2A, A3SC9O2, |
| Rey_Alvivv_O | A3SXP9U, A3QJYUR, A3R5EGJ, A3SXP9V, A3QJYUS, A3RQU2C                    |
|              | A36B89C, A354D1T, A35PSNL, A36B89D, A36WNV5, A34IXG2, A35PSNM, A354D1V, |
| Key_Bern_U   | A35PSNN, A36B89F, A36WNV7, A37I3GZ, A34IXG4, A35PSNO, A36WNV8, A35PSNP, |
|              | A36B89H, A36WNV9                                                        |
| 3S1E08H009   | A402WIO, A3YALPD, A3YW1B5, A40OC4H, A3ZHGWY, A40OC4I, A419RQA, A3YW1B7, |
| 33150911003  | A3ZHGWZ, A3YALPG, A419RQC, A3YW1B9, A3ZHGX1, A402WIT, A400C4L           |



## **5. Summary and Recommendations**

TRE Altamira used its SqueeSAR® algorithm to process Sentinel images coupled with a GNSS calibration procedure to carry out a 2-D analysis of ground displacement over Livermore spanning 13 March 2015 to 30 September 2020. The current analysis provides an annual update for the period September 2019 to September 2020.

Up to -0.25 inches observed over the Main Basin over Livermore in 2020. The precision of the InSAR results is maintained within a quarter of an inch (±0.15 inches).



## **Appendix 1: Delivered Files**

#### **List of Deliverables**

Table 4 list the deliverables including the present report, the InSAR data files and an updated version of the TRE toolbar, a software tool for assisting with the loading, viewing and interrogation of the data in ESRI ArcGIS 10.x software (For set-up procedure and functionalities, see the attached manual *TREToolbarSetup\_5.0.pdf*).

Table 4: List of deliverables.

| Description                                                                  | File name                                                                                                                                                               |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SqueeSAR Data                                                                | LOS Calibrated & Uncalibrated: Ascending: LIVERMORE_SNT_T35_A_SEP2020_NAD83_IMPERIAL_CA3030A1S.shp Descending: LIVERMORE_SNT_T42_D_SEP2020_NAD83_IMPERIAL_CA3030A2S.shp |
|                                                                              | 2-D Calibrated & Uncalibrated:  Vertical:  LIVERMORE_SNT_VERT_SEP2020_NAD83_IMPERIAL_CA3030A3V.shp East-West:  LIVERMORE_SNT_EAST_SEP2020_NAD83_IMPERIAL_CA3030A4E.shp  |
| MXD project file containing all the data (ESRI ArcGIS version 10.0 and 10.8) | Livermore_InSAR_Analysis_2014-2020.mxd                                                                                                                                  |
| Technical Report                                                             | Livermore_Annnual_SqueeSAR_Analysis_2020_Report.pdf                                                                                                                     |
| TRE Toolbar v5.8.5                                                           | TREToolbar_5.0                                                                                                                                                          |
| (ESRI® ArcGIS 10.x)                                                          | TREToolbarSetup_5.0.pdf                                                                                                                                                 |



#### **Database Structure**

The SqueeSAR vector data are delivered in a shapefile format and projected to NAD\_1983\_StatePlane\_California\_III\_FIPS\_0403\_Feet (EPSG:2227) coordinates. The shapefile of each elaboration contains details about the measurement points identified, including displacement rate, elevation, cumulative displacement and quality index. The information associated within the database files (dbf) are described in Table 5.

Table 5: Description of the fields contained in the database of the vector data. \*Field is only present in LOS data sets.

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CODE        | Measurement Point (MP) identification code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| HEIGHT*     | Topographic Elevation referred to WGS84 ellipsoid of the measurement point [ft].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| H_STDEV*    | Height standard deviation of the measurement point [ft].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| VEL         | <ul> <li>Ascending LOS: Positive values correspond to motion toward the satellite (i.e. uplift and/or westward movement); negative values correspond to motion away from the satellite (i.e. downward and/or eastward movement).</li> <li>Descending LOS: Positive values correspond to motion toward the satellite (i.e. uplift and/or eastward movement); negative values correspond to motion away from the satellite (i.e. downward and/or westward movement).</li> <li>Vertical (VEL_V): Positive values indicate uplift; negative values indicate downward movement.</li> <li>E-W Horizontal (VEL_E): Positive values indicate eastward movement; negative values westward movement.</li> </ul> |  |  |  |  |  |
| V_STDEV     | Displacement rate standard deviation [in/yr].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| ACC*        | Acceleration rate [in/yr²].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| A_STDEV*    | Standard deviation of the acceleration value [in/yr²].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| SEASPM_AMP* | Average seasonal amplitude [in]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| S_AMP_STD*  | Average seasonal amplitude standard deviation [in]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| SEASON_PHS* | Average seasonal phase [day]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| S_PHS_STD*  | SEASON_PHS standard deviation [day]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| COHERENCE*  | Quality measure between 0 and 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |



| STD_DEF*  | Displacement time series error bar [in]                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFF_AREA* | This parameter represents the effective extension of the area [ft²] covered by Distributed Scatterers (DS). For permanent scatterers (PS), its value is set to 0. |
| Dyyyymmdd | Series of columns that contain the displacement values of successive acquisitions relative to the first acquisition available [in].                               |

#### **TREmaps**

TREmaps® is our proprietary online GIS platform to view and interrogate the InSAR datasets. TREmaps has been completely revamped to include features and functionality previously available only within the TRE ArcGIS toolbar. Little or no training is required and no specialized GIS software is necessary. With internet access, the platform allows data to be overlaid on an optical image and to perform various operations on the data.

#### Functionalities include:

- Time-Series tool to view the history of displacement for each measurement point
- Average Time-Series tool to view the average history of displacement for a group of selected points.
- Cross-section tool to view the evolution of the ground surface over time
- Data download and data export (of subsets of data) to common formats (SHP, KML, GeoDB, CSV)
- Dynamic filtering tool to filter a subset of the results by a specified time period
- Client data integration.

TREmaps is hosted by Microsoft Azure, with all the advantages of data security and the cloud-based environment, with minimal downtime and robust internet connectivity. TREmaps runs directly on most Internet browsers and is accessed through a secure client login.

To log in, please go to:

https://tremaps5.tre-altamira.com/treaviewer

For assistance on any of the functions, please click the Help icon on the viewer or go to:

https://site.tre-altamira.com/tremaps-getting-started/



### **Appendix 2: Additional Radar Data Details**

InSAR-based approaches measure surface displacement on a one-dimensional plane, along the satellite line-of-sight (LOS). The LOS angle varies depending on the satellite and on the acquisition parameters while another important angle, between the orbit direction and the geographic North, is nearly constant.

An ascending orbit denotes a satellite travelling from south to north and imaging to the east, while a descending orbit indicates a satellite travelling from north to south and imaging to the west. Table 6 lists the values of the angles for this study, while Figure 16 and Figure 17 show the geometry of the image acquisitions over the site for the ascending and descending orbits, respectively. The symbol  $\Theta$  (theta) represents the angle the LOS forms with the vertical and  $\delta$  (delta) the angle formed with the geographic north.

Table 6: Satellite viewing angles for the study.

| Satellite | Wavelength | Orbit      | Beam Mode/<br>Track | Symbol | Angle  |
|-----------|------------|------------|---------------------|--------|--------|
|           |            | Ascending  | 25                  | θ      | 41.92° |
|           | C-Band     |            | 35                  | δ      | 10.48° |
| Sentinel  | 2.19 in    | Danaandina | 42                  | θ      | 42.34° |
|           |            | Descending | 42                  | δ      | 8.94°  |

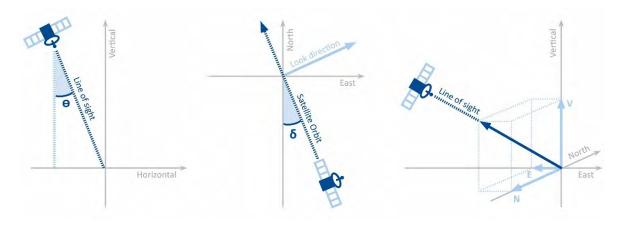



Figure 16: Geometry of the image acquisitions along the ascending orbit.



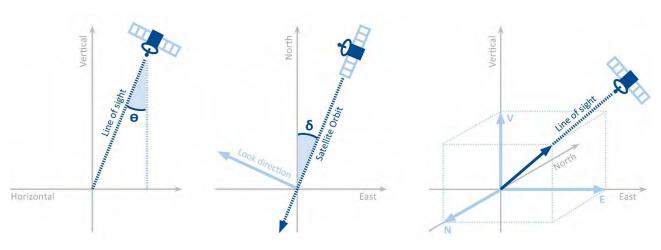



Figure 17: Geometry of the image acquisitions along the descending orbit.



#### **Appendix 3: Calibration Methodology**

The calibration methodology applied to Livermore consists of the following steps (Figure 18):

- 1. Data collection: InSAR LOS measurements and GNSS measurements are collected independently.
- 2. Time series filtering:
  - a) To reduce the noise of GNSS measurements, the daily time series are filtered using a 30-day moving average (15 days prior and 15 days following any given date). The filtered GNSS 3-D measurements are then projected to the satellite 1-D LOS to create a GNSS LOS time series (LTS). This step allows a direct comparison of the two independent measurements (measurement direction correspondence).
  - b) All InSAR measurement points (MP) within a 100 meter radius of each GNSS are selected and used to calculate an average time series (ATS) for the period of overlap with the GNSS time series (one ATS for each GNSS). This step allows the comparison of data collected at a same location over a corresponding period of time (spatial and temporal correspondence).
- 3. <u>Plane removal</u>: to remove possible linear errors related to potential satellite orbital inaccuracies, a difference in average velocity (linear trend) is calculated for each ATS and corresponding LTS. The differences calculated for each ATS and LTS pair are then used to estimate and remove a first order surface (plane) from the InSAR data. The time series of each InSAR MP are now corrected from any possible linear trend related to orbital inaccuracies.
- 4. <u>Absolute calibration</u>: to tie the two measurement techniques together and convert the relative InSAR measurements to the absolute reference of the GNSS network, it is necessary to calibrate the InSAR time series. The procedure involves the generation of a time series of residuals by comparing the ATS to the corresponding LTS for each GNSS location. All the time series of residuals are then averaged to define a common time series of residuals (cRTS). This cRTS represents the movement of the local InSAR reference points with respect to the absolute GNSS reference frame. The cRTS is then removed from every InSAR MP time series.



5. <u>Absolute Vertical InSAR</u>: The output of the absolute calibration is a LOS InSAR data set fixed to the same absolute reference system of the GNSS network. The calibration is performed separately for each orbit (ascending and descending) and the absolute LOS InSAR results will then be combined to produce the vertical and horizonal east/west displacement.

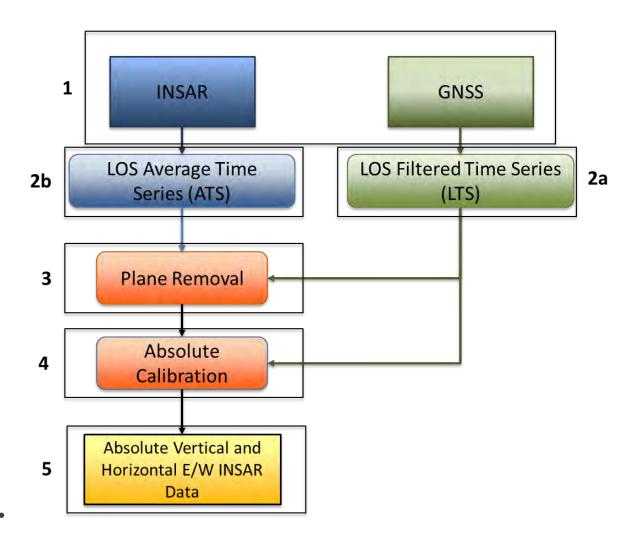



Figure 18: Diagram of the calibration methodology applied over the site.







#### MILAN

Ripa di Porta Ticinese, 79 20143 Milano - Italy Tel. +39.02.4343.121 Fax +39.02.4343.1230

tre-altamira.com

#### BARCELONA

C/ Corsega, 381-387 E-08037 Barcelona Spain Tel.: +34 93 183 57 50 Fax: +34 93 183 57 59

#### VANCOUVER

# 410 - 475 West Georgia Street Vancouver, BC V6B 4M9 - Canada Tel. +1.604.331.2512 Fax +1.604.331.2513

## 9 Land Use

# 9.1 Program Description

## 9.1.1 Monitoring Network

For more information on Zone 7's Land Use Monitoring Program, see the Section 1.3.1, Land Use, of the Alternative GSP. Zone 7 monitors land use changes in the Valley as part of the long-range groundwater basin management program. The Land Use Monitoring Program identifies significant changes in land use using aerial photography, site visits, and development referrals reviewed by Zone 7. The emphasis is on changes in pervious areas and quantity and quality of irrigation water that could affect the volume or quality of water recharging the Main Basin. The information is used by Zone 7 to quantify areal recharge (i.e., "rainfall recharge" and "applied water recharge").

## 9.1.2 Program Changes for the Water Year

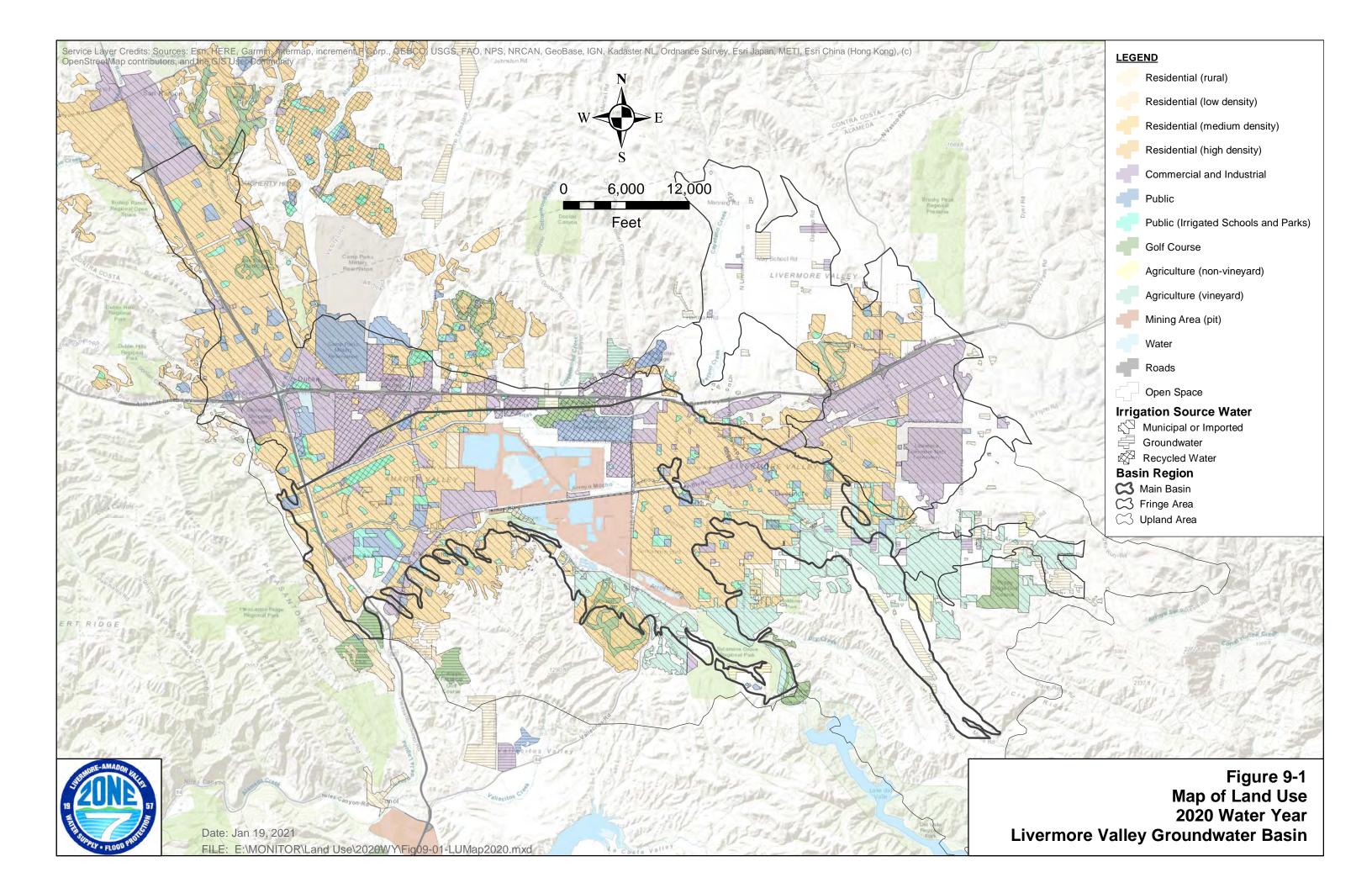
There were no changes to the Land Use Monitoring Program during the 2020 WY.

## 9.2 Results for the 2020 Water Year

Although there was some in-fill development that occurred during the 2020 WY, no major land use changes that would significantly affect the groundwater supply or groundwater quality were identified by Zone 7's land use review efforts. *Figure 9-1* shows the various land use areas in the Livermore Valley Groundwater Basin, and their main source of irrigation water, as understood by Zone 7. *Table 9-1* lists the acreage of each land use type and main irrigation water type (i.e., delivered water, groundwater, or recycled water) for the Main Basin, Fringe Areas, and Upland Areas.



# TABLE 9-1 LAND USE ACREAGE (in acres) 2020 WATER YEAR LIVERMORE VALLEY GROUNDWATER BASIN


| Basir                            |        |     | Main Bas | in    |        |        |     | Fringe Are | as    |        |       | U   | pland A | \reas  |        |
|----------------------------------|--------|-----|----------|-------|--------|--------|-----|------------|-------|--------|-------|-----|---------|--------|--------|
| Category Irrigation Water Source | DW     | GW  | RW       | none  | Total  | DW     | GW  | RW         | none  | Total  | DW    | GW  | RW      | none   | Total  |
| Agriculture (non-vineyard)       | 56     | 94  | 0        | 0     | 150    | 0      | 28  | 0          | 0     | 28     | 146   | 47  | 0       | 0      | 193    |
| Agriculture (vineyard)           | 1,497  | 19  | 0        | 0     | 1,516  | 708    | 0   | 0          | 0     | 708    | 1,840 | 1   | 0       | 0      | 1,841  |
| Total Agricultural               | 1,552  | 113 | 0        | 0     | 1,666  | 708    | 28  | 0          | 0     | 735    | 1,986 | 48  | 0       | 0      | 2,033  |
| Commercial and Business          | 1,406  | 42  | 400      | 0     | 1,849  | 3,872  | 117 | 1,268      | 0     | 5,257  | 387   | 15  | 28      | 0      | 430    |
| Public                           | 563    | 0   | 400      | 0     | 962    | 957    | 3   | 57         | 0     | 1,018  | 143   | 0   | 88      | 0      | 232    |
| Public (Irrigated Park)          | 563    | 0   | 118      | 0     | 680    | 185    | 0   | 87         | 0     | 272    | 97    | 0   | 11      | 0      | 108    |
| Residential (high density)       | 421    | 0   | 0        | 0     | 421    | 264    | 0   | 158        | 0     | 422    | 29    | 0   | 15      | 0      | 44     |
| Residential (medium density)     | 6,446  | 0   | 17       | 0     | 6,463  | 5,279  | 0   | 45         | 0     | 5,324  | 2,937 | 0   | 49      | 0      | 2,986  |
| Residential (low density)        | 147    | 150 | 0        | 0     | 297    | 20     | 0   | 0          | 0     | 20     | 185   | 177 | 0       | 0      | 362    |
| Roads                            | 0      | 0   | 0        | 78    | 78     | 0      | 0   | 0          | 701   | 701    | 0     | 0   | 0       | 93     | 93     |
| Total Urban                      | 9,545  | 192 | 934      | 78    | 10,749 | 10,576 | 120 | 1,616      | 701   | 13,013 | 3,778 | 192 | 192     | 93     | 4,255  |
| Golf Course                      | 140    | 90  | 126      | 0     | 356    | 230    | 15  | 66         | 0     | 311    | 466   | 172 | 0       | 0      | 638    |
| Residential (rural)              | 41     | 155 | 0        | 0     | 196    | 19     | 373 | 0          | 0     | 392    | 166   | 192 | 0       | 0      | 358    |
| Mining Area (pit)                | 0      | 0   | 0        | 1,959 | 1,959  | 0      | 0   | 0          | 0     | 0      | 0     | 0   | 0       | 0      | 0      |
| Open Space                       | 0      | 0   | 102      | 3,748 | 3,850  | 0      | 0   | 0          | 7,440 | 7,440  | 0     | 0   | 0       | 20,324 | 20,324 |
| Water                            | 0      | 0   | 0        | 1,034 | 1,034  | 0      | 0   | 0          | 65    | 65     | 0     | 0   | 0       | 170    | 170    |
| Total Other                      | 181    | 245 | 229      | 6,740 | 7,394  | 249    | 389 | 66         | 7,505 | 8,208  | 632   | 364 | 0       | 20,494 | 21,490 |
| TOTALS FOR 2020 WY               | 11,278 | 550 | 1,163    | 6,818 | 19,809 | 11,532 | 536 | 1,681      | 8,206 | 21,956 | 6,396 | 603 | 192     | 20,587 | 27,778 |
| TOTALS FOR 2019 WY               | 11,274 | 550 | 1,008    | 6,977 | 19,809 | 11,468 | 536 | 1,576      | 8,376 | 21,956 | 6,382 | 553 | 192     | 20,651 | 27,778 |
| CHANGE SINCE PREVIOUS YEAR       | 4      | 0   | 155      | -159  | 0      | 64     | 0   | 106        | -170  | 0      | 14    | 50  | 0       | -64    | 0      |

Irrigation Water Sources

DW = Delivered Municipal Water

GW = Groundwater

RW = Recycled Water



# 10 Wastewater and Recycled Water

# 10.1 Program Description

## 10.1.1 Monitoring Network

For more information on Zone 7's Wastewater and Recycled Water Monitoring Program, see *Section 4.8, Wastewater and Recycled Water Monitoring*, of the Alternative GSP. The City of Livermore and the DSRSD are currently responsible for treating the vast majority of wastewater produced within the Valley. Both of these publicly-owned treatment works (POTWs) produce secondary-treated and tertiary-treated effluent, which is disinfected and either reclaimed and used for landscape irrigation or exported from the Valley through the Livermore-Amador Valley Water Management Agency (LAVWMA) export pipeline.

Beginning in the 2017 WY and continuing through the 2020 WY, City of Pleasanton used recycled water produced by Livermore and DSRSD for landscape irrigation in the City of Pleasanton. Pleasanton's usage is included in the Livermore Water Reclamation Plant (LWRP) and DSRSD recycled water totals reported in this report.

Elsewhere in the Basin, a minor amount of untreated or partially-treated wastewater may reach the groundwater supply as percolate. The sources of this unmanaged supply component include the Veterans Administration (VA) Hospital onsite sewage treatment plant, residential and commercial septic systems located over the entire groundwater basin, and leaking municipal sewer lines throughout the cities. This report attempts to quantify (estimate) these minor water supply components, as they often have some significance for the computed Main Basin's salt and nutrient loading (Sections 13.4 and 13.5).

## 10.1.2 Program Changes for the Water Year

There were no changes to the Wastewater and Recycled Water Monitoring Program during the 2020 WY.

## 10.2 Results for the 2020 Water Year

## 10.2.1 Wastewater and Recycled Water Volumes

In the 2020 WY, about 96% of the wastewater produced over the groundwater basin was treated at LWRP and DSRSD. A total of 17,676 AF of municipal wastewater was treated at the two POTWs, of which 10,629 AF (60%) was exported and about 7,176 AF (41%) was recycled and used primarily for landscape irrigation (compared to 34% in the 2019 WY). About 25% of the LWRP's

recycled water (609 AF) and 9% of DSRSD's recycled water (427 AF) was applied to landscapes over the Main Basin (including City of Pleasanton's applications). The remaining recycled water was applied on areas outside of the Main Basin; primarily on areas overlying the Northern Fringe Subarea and the Tassajara Uplands (*Figure 10-1*). A summary of the wastewater volumes for the 2020 WY are presented in *Table 10-A* below.

Table 10-A: Municipal Wastewater and Recycled Water Volumes (AF) for the 2020 WY

| Water Type                            | LWRP  | DSRSD  | Total  |
|---------------------------------------|-------|--------|--------|
| Wastewater Influent                   | 6,141 | 11,535 | 17,676 |
| Treated Effluent Exported via LAVWMA* | 4,590 | 6,039  | 10,629 |
| Total Volume Recycled                 | 2,426 | 4,750  | 7,176  |
| RW Applied to Main Basin**            | 609   | 427    | 1,036  |

\* Does not include Zone 7 Demin Plant discharge to LAVWMA via DSRSD

\*\* Recycled water applied over the Main Basin as landscape irrigation

DSRSD Dublin San Ramon Services District

LAVWMA Livermore-Amador Valley Water Management Agency

LWRP Livermore Wastewater Reclamation Plant

RW Recycled Water

Recycled water continues to account for small fractions of the Valley's water supply (15%) and Main Basin recharging waters (approximately 2%); however, of greater benefit, the recycled water use in the 2020 WY potentially conserved up to 7,176 AF of water that might have otherwise come from groundwater storage.

The program also assumes that a small amount of untreated wastewater leaches to the Main Basin from the VA Hospital wastewater treatment ponds located in southern Livermore, domestic onsite wastewater treatment systems (OWTS) (e.g., septic systems), and leaking wastewater pipelines that run throughout the groundwater basin. The age of wastewater and recycled water pipelines is considered in the estimation of "Pipe Leakage." There have been no significant changes in land use or septic system densities over the Main Basin that would change the estimated water contribution from these sources in recent years. The estimated volumes of leachate from these three sources for the 2020 WY are presented in *Table 10-B* below.

Table 10-B: Other Wastewater Volumes (AF) for the 2020 Water Year

|                     | VA<br>Hospital* | Septic<br>Tanks* | Pipe<br>Leakage** | Total |  |
|---------------------|-----------------|------------------|-------------------|-------|--|
| Wastewater Leachate | 50              | 80               | 551               | 681   |  |

<sup>\*</sup> Estimated total over the Main Basin

# 10.2.2 Wastewater and Recycled Water Quality

The recycled water from both wastewater plants met the DDW's "Title 22" water quality standards for irrigation uses during the 2020 WY. While salt (Section 10.2.2.1, below) and nutrients (specifically nitrate, see Section 10.2.2.2) are the primary constituents of concern for wastewater and recycled water applied over the Main Basin, other constituents of emerging concern (CECs) will need to be considered if recycled water is used for future aquifer recharge projects.

## 10.2.2.1 Salt Loading

Table 10-C below presents the estimated salt loading over the Main Basin from applied wastewater and recycled water during the 2020 WY.

Table 10-C: Salt Loading from Applied Recycled Water and Wastewater for 2020 WY

| Source       | Volume<br>(AF) | TDS Average<br>(mg/L) | Salt Applied (tons) |
|--------------|----------------|-----------------------|---------------------|
| LWRP RW      | 609            | 578                   | 478                 |
| DSRSD RW     | 427            | 726                   | 421                 |
| Total RW     | 1,036          | 639                   | 899                 |
| VA Hospital  | 50             | 573                   | 39                  |
| Septic       | 80             | 600                   | 65                  |
| Pipe Leakage | 551            | 466                   | 349                 |
| Total WW     | 681            | 490                   | 453                 |
| Total        | 1,717          | 722                   | 1,352               |

**DSRSD Dublin San Ramon Services District** 

LWRP Livermore Wastewater Reclamation Plant

RW Recycled Water

WW Wastewater

<sup>\*\*</sup> Calculated. Includes leakage from sanitary sewer & RW pipes

Zone 7 assumes that the entire salt mass in the applied water is transported through the vadose zone (area above the water table), surficial clays, if any, and eventually reaches groundwater. This leads to a conservative (potentially high) estimate of the salt loading attributed to recycled water applications. About 827 tons (approximately 7%) of the Main Basin's salt inflow (12,471 tons) was attributed to recycled water use over the Main Basin during the 2020 WY (see *Table 13-B*). However, if potable water supplies would have been used for this irrigation demand, the salt loading would have been about 473 tons or only about 354 tons less. This difference is significantly less than the 1,230 tons that were removed by Zone 7's Mocho Groundwater Demineralization Plant (MGDP) in the 2020 WY (see *Table 13-C*).

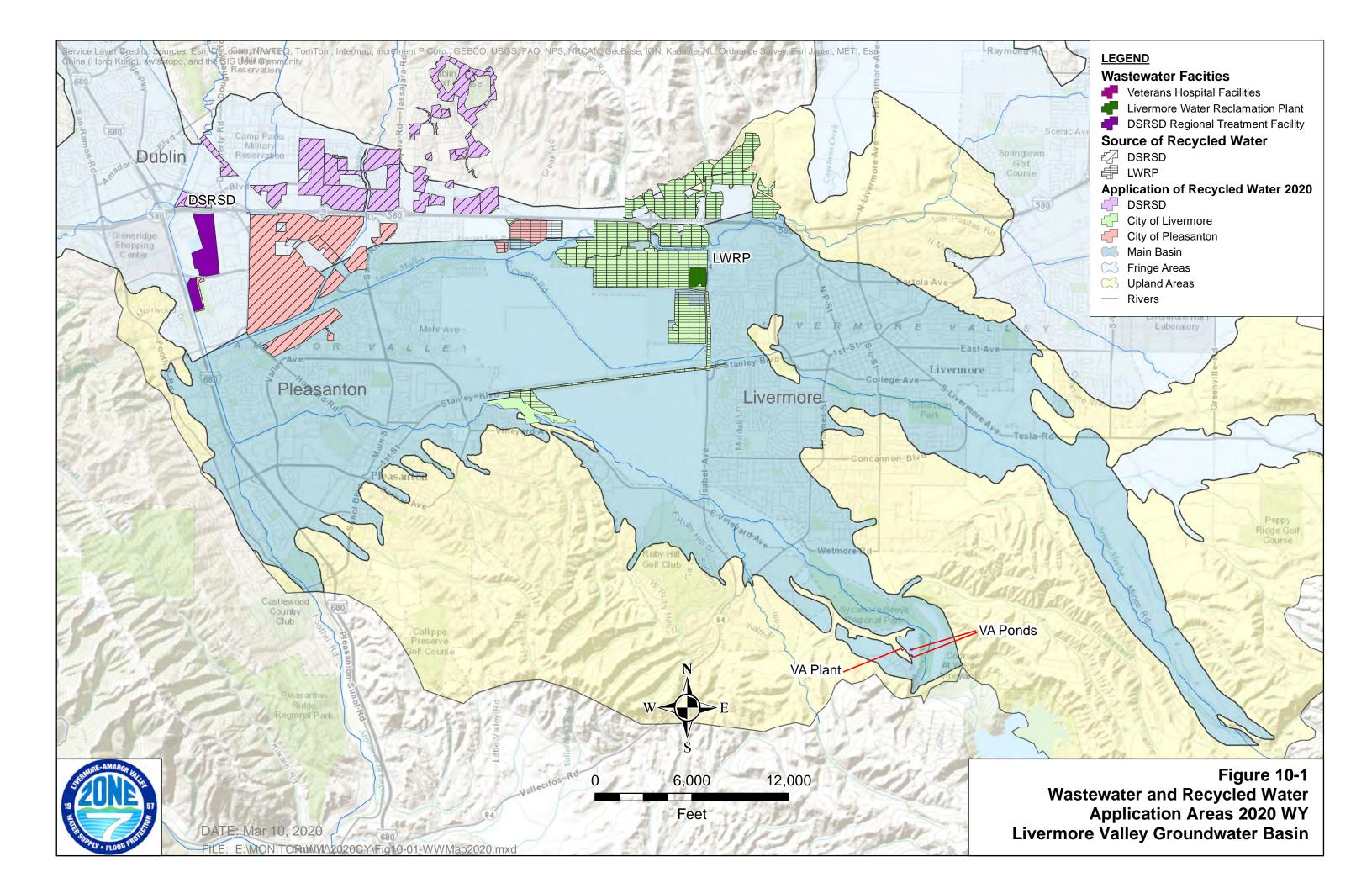
#### 10.2.2.2 Nitrogen Loading

Table 10-D below presents the estimated nitrogen loading over the Main Basin from applied wastewater and recycled water during the 2020 WY.

Table 10-D: Nitrogen Loading from Applied Recycled Water and Wastewater for the 2020 WY

|              | Volume | Nitrogen | Nitrogen |      |               |
|--------------|--------|----------|----------|------|---------------|
| Source       | (AF)   | NO3(N)   | NO2(N)   | TKN  | Applied (lbs) |
| LWRP RW      | 609    | 0.1      | 0.8      | 52.5 | 87,392        |
| DSRSD RW     | 427    | 0.8      | 1.6      | 30.0 | 35,594        |
| Total RW     | 1,036  | 0.4      | 1.1      | 43.2 | 122,986       |
| VA Hospital  | 50     | 11.1     | 0.1      | 5.0  | 1,025         |
| Septic       | 80     | 35.0     | 0.0      | 0.0  | 1,719         |
| Pipe Leakage | 551    | 0.2      | 0.5      | 19.9 | 30,167        |
| Total WW     | 681    | 5.1      | 0.4      | 16.5 | 32,911        |
| Total        | 1,717  | 2.3      | 0.8      | 32.6 | 155,897       |

DSRSD Dublin San Ramon Services District


LWRP Livermore Wastewater Reclamation Plant

NO3(N) Nitrate as Nitrogen NO2(N) Nitrite as Nitrogen RW Recycled Water

TKN Total Kejldahl Nitrogen

WW Wastewater lbs pounds

The three nitrogen compounds in *Table 10-D* above represent the nitrogen content potentially available for conversion to nitrate as the water percolates through the soil. The table shows that about 156,000 pounds of nitrogen was applied over the Main Basin during the 2020 WY. However, from a practical standpoint, much of the nitrogen will be removed from the percolate through soil denitrification and plant uptake processes.



## 11 Groundwater Storage

### 11.1 Groundwater Storage Calculations

#### 11.1.1 Groundwater Storage Threshold

To avoid significant depletion of groundwater storage, Zone 7 operates the Livermore Basin such that groundwater in storage remains between a full basin volume (254 thousand acre-feet [TAF]) and the historic low storage of 128 TAF, or about one half of total storage volume. This 126 TAF (254 TAF – 128 TAF) is considered the Operational Storage. Groundwater below this minimum threshold is regarded as Reserve Storage that is unavailable during nonemergency conditions. Most of the groundwater in storage is contained in the Main Basin, which is characterized by the largest saturated thickness.

#### 11.1.2 Calculation Methods

Zone 7 uses two methods for calculating groundwater storage in the Main Basin: The Groundwater Elevation (GWE) Method and the Hydrologic Inventory (HI) Method. The GWE method (Section 11.1.3) uses groundwater level data and storage coefficients for "nodes" (originally developed by DWR in 1974) to estimate the total volume of water in the Main Basin (see Sections 2.2.3.4, Representation of Aquifers and Aquitards in Groundwater Models, and 2.4.1, Overview of Methodology, in the Alternative GSP). The HI method (Section 11.1.4) involves accounting for inflows and outflows for each water year and adds the net change in storage to the previous year's volume (see Sections 2.4.2, Current Groundwater Budget, and 2.4.3, Historical Groundwater Budget, in the Alternative GSP). Storage volumes from the two methods are averaged to quantify the total storage of the Main Basin (Section 11.1.5). See Section 2.4.1, Overview of Methodology, of the Alternative GSP for more details.

#### 11.1.3 Groundwater Elevation Results

The GWE method yielded a total storage of 231.6 TAF at the end of 2020 WY, which is 16.8 TAF less than the GWE value calculated for the 2019 WY. *Figure 11-1* shows the Upper and Lower Aquifer groundwater elevations used to calculate the GWE method storage for the 2020 WY. The change in storage from Fall 2019 to Fall 2020 for each Main Basin node is shown in *Figure 11-2*. *Table 11-1* shows the historical annual GWE groundwater storage volumes for each Subarea from the 1974 WY to 2020 WY.

### 11.1.4 Hydrologic Inventory Results

The HI method produced a total storage value of 247.2 TAF for the end of 2020 WY, which is about 7.9 TAF less than the end of 2019 WY HI value. The results of the HI method for the 2020 WY are summarized below in *Table 11-A*. All the HI components are listed in *Table 11-2* along with their method of measurement and their approximate accuracy. The historic HI components and results for water years 1974 to 2020 are tabulated in *Table 11-3*, and charted in *Figure 11-3* along with the water year type (e.g., wet, normal, dry, etc.) noted for each year. *Figure 11-4* shows a map of the pumping well locations during the 2020 WY, and a representation of the relative volumes of water pumped from each well.

Table 11-A: HI Method Groundwater Storage Supply and Demand Volumes, 2020 WY (AF)

| CATEGORY                       | Sustainable<br>Avg | 2020    | % of Avg | Change from 2019 |
|--------------------------------|--------------------|---------|----------|------------------|
| SUPPLIES                       | 19,800             | 13,515  | 68%      | -10,110          |
| Stream Recharge Artificial     | 5,300              | 2,461   | 46%      | -482             |
| Stream Recharge Natural        | 6,600              | 3,511   | 53%      | -4,151           |
| Rainfall Recharge              | 4,300              | 2,869   | 67%      | -5,719           |
| Applied Water Recharge         | 1,600              | 2,465   | 154%     | 179              |
| Pipe Leakage                   | 1,000              | 1,209   | 121%     | 64               |
| Subsurface Inflow              | 1,000              | 1,000   | 100%     | 0                |
| DEMANDS                        | 18,800             | 21,447  | 114%     | 2,305            |
| Zone 7 Pumping excluding DSRSD | 5,300              | 11,101  | 209%     | 3,081            |
| Other Pumping                  | 8,400              | 5,248   | 62%      | -1,366           |
| Agricultural Pumping           | 400                | 112     | 28%      | -1               |
| Mining Losses                  | 1,400              | 700     | 50%      | 0                |
| Evapotranspiration (ETo)       | 3,200              | 4,140   | 129%     | 1,255            |
| Subsurface Outflow             | 100                | 146     | 146%     | -663             |
| NET CHANGE (SUPPLY - DEMAND)   | 1,000              | -7,932  |          | -12,415          |
| TOTAL STORAGE (HI Method)      |                    | 247,232 |          | -7,932           |

AF = acre-feet

DSRSD = Dublin San Ramon Services
District

Avg = average

#### 11.1.5 Total Storage

The total groundwater storage for the Main Basin is computed by averaging the storage estimates from the GWE and HI methods (*Table 11-B*). As a result, the total groundwater in storage at the end of 2020 WY was calculated to be 239.5 TAF, with 111.5 TAF of groundwater available as operational storage, which is about 88% of the total operational storage capacity (i.e., 126 TAF from 1983 WY).

Table 11-B: Groundwater Storage Summary, 2020 WY (in Thousand AF)

| Storage Calculation Method          | End of 2019<br>WY | End of 2020<br>WY | Change in Storage |
|-------------------------------------|-------------------|-------------------|-------------------|
| Groundwater Elevations (GWE)        | 248.5             | 231.7             | -16.8             |
| Hydrologic Inventory (HI)           | 255.2             | 247.2             | -8.0              |
| Total Storage (average of GWE & HI) | 251.8             | 239.5             | -12.3             |
| Operational Storage*                | 123.8             | 111.5             | -12.3             |

<sup>\*</sup> Operational Storage = Total Storage - Reserve Storage (i.e., 128 TAF)

For the past few years, the groundwater storage values calculated by both the GWE and HI Methods have been within about 6 TAF. However, during the 2020 WY the GWE storage dropped significantly (16.8 TAF) more than the HI storage (7.9 TAF) for a total difference now of 15.5 TAF between the two storage values. And while there have been significant differences between the two methods in the past that converged a few years later (e.g., 1992 and 2008/2009), in this case the GWE storage is less than the HI storage; in the past the opposite was true. The reason for this divergence is unclear; however, with the GWE storage, there appear to be nodes that exhibited significant decreases in storage where there does not appear to be a known corresponding demand. For example, *Figure 11-2* shows a total storage drop in Nodes 39 and 40 of about 3.3 AF, while CWS only reported pumping 1.1 TAF. Also, Nodes 30, 31, and 35, which include the mining area, decreased a total of 6.1 TAF, while the mining companies reported no significant exports or losses. Zone 7 staff will continue to investigate possible reasons for this significant difference.

### 11.2 Groundwater Budget

#### 11.2.1 Budget Categories

Groundwater inflows and outflows in the Main Basin are budgeted in two categories.

- Natural Recharge and Demand—groundwater not managed or pumped by Zone 7
- Artificial Recharge and Zone 7 Pumping—groundwater managed and pumped by Zone 7 (i.e., "Conjunctive Use")

Annual recharge and demand for both the natural and artificial components, from the 1974 WY to the 2020 WY, are charted in *Figure 11-5*. The figure also shows the cumulative groundwater storage relative to the 1974 WY storage value, which supports the notion that that groundwater storage has been managed sustainably over the last 45 years.

#### 11.2.2 Natural Recharge and Demand

In 1992, Zone 7 estimated that the long-term average "natural" groundwater inflow into the Main Basin is about 13,400 AF annually (*Zone 7, 1992*). This long-term average (shown as the "sustainable values" in the tables below) was primarily based on average local precipitation and natural recharge over a century of hydrologic records; however, the actual amount of natural recharge varies from year to year depending on the amount of local precipitation during the year. Recharge from irrigation (applied water) is also included in the "natural" inflow total, because of its steady, sustainable, contribution to groundwater recharge in the Basin.

The "natural" groundwater demand (outflow), which includes groundwater pumping (other than Zone 7's), evapotransporation (ETo), mining losses, and groundwater basin overflow is allocated to the "natural" inflow. As a routine, Zone 7 monitors each "natural" demand component and checks whether it is within the projected sustainable average range. *Table 11-C* below summarizes the results for the 2020 WY.

Table 11-C: Natural Groundwater Inflow and Demand, 2020 WY

| Component            | Estimated Sustainable<br>Values (AF/Yr) | 2020 WY<br>(AF) | Percentage of<br>Sustainable<br>Average |
|----------------------|-----------------------------------------|-----------------|-----------------------------------------|
| Natural Recharge     | 13,400                                  | 9,699           | 72%                                     |
| Natural Demand       | 13,400                                  | 10,200          | 76%                                     |
| Net Natural Recharge | 0                                       | -501            | -4%*                                    |

AF = acre-feet AF/Yr = acre-feet per year

Just over half (7,214 AF) of the "natural" demand (13,400 AF) comes from groundwater pumped by Zone 7's retailers. The retailers are permitted by contract to pump a Groundwater Pumping Quota (GPQ) (accounted for on a calendar year [CY] basis) without having to pay a replenishment fee to Zone 7. They can carry forward any un-pumped GPQ (up to 20% of their GPQ). The retailer's GPQ, along with their groundwater pumping volumes for the 2020 CY, are shown in *Table 11-D* below. None of the retailers pumped more than their respective GPQ in 2020 WY.

Table 11-D: Retailer Groundwater Pumping and Quotas in 2020 Calendar Year (AF)

| Retailer                      | GPQ   | Carryover from 2019 | Pumped in 2020 | Carryover to 2021** |
|-------------------------------|-------|---------------------|----------------|---------------------|
| City of Pleasanton            | 3,500 | 3                   | 3,110          | 393                 |
| Cal Water Service (CWS)       | 3,069 | 614                 | 1,063          | 614                 |
| DSRSD (pumped by Zone 7)      | 645   | 0                   | 645            | 0                   |
| City of Livermore (not used)* | 31    | -                   | 0              | -                   |
| Total                         | 7,214 | 617                 | 4,818          | 1,007               |

AF = Acre-feet

GPQ = Groundwater Pumping Quota

\* = Livermore no longer pumps groundwater, GPQ not included in totals or carryover.

\*\* = Maximum of 20% of GPQ can be carried over

#### 11.2.3 Artificial Recharge and Demand—Conjunctive Use

Since the 1960s, Zone 7 has actively embraced a "conjunctive use" approach to basin management by integrating local and imported surface water supplies with the local conveyance, storage, and groundwater recharge features. These features include local arroyos (which are also used as flood protection facilities during wet seasons) and two former quarry pits (Lake I and

<sup>\* =</sup> percent of Sustainable Natural Recharge

Cope Lake). Zone 7's "artificial recharge" operation involves releasing imported water supplies into the local "losing stream" arroyos to recharge the groundwater basin. The volume of artificial recharge is dependent on Zone 7's annual SWP allocations, precipitation captured locally, and water supply operations plans. Typically, Zone 7 will commence artificial recharge operations during times of surplus imported water availability.

While groundwater pumping by the retailers is accounted for in the "natural" budget (see above), Zone 7's groundwater pumping and artificial recharge volumes are accounted for in the "conjunctive use" budget. Zone 7's annual groundwater production and artificial recharge operations vary with the availability of surface water, treatment plant capacity, and the available groundwater storage space.

Table 11-E below shows the artificial recharge and Zone 7's groundwater pumping totals for the 2020 WY. Since 1974, Zone 7 has artificially recharged 66,982 AF more than it has pumped (*Figure 11-6*). These totals do not include the water Zone 7 pumps for DSRSD (usually 645 AF/yr), which is considered part of the "natural" demand.

Table 11-E: Conjunctive Use Supply and Demand, 2020 WY

| Component               | Estimated Sustainable<br>Avg (AF/Yr) | 2020 WY<br>(AF) | Percentage of<br>Sustainable<br>Average |
|-------------------------|--------------------------------------|-----------------|-----------------------------------------|
| Artificial Recharge     | 5,300                                | 2,461           | 46%                                     |
| Zone 7 Pumping          | 5,300                                | 11,101          | 209%                                    |
| Net Artificial Recharge | 0                                    | -8,640          | -163%*                                  |

AF = acre-feet Avg = average

AF/Yr = acre-feet per year \* = percent of Sustainable Artificial Recharge

# TABLE 11-1 TOTAL MAIN BASIN STORAGE BY SUBAREA (AF) GROUNDWATER ELEVATION METHOD 1974 TO 2020 WATER YEARS

| Water        |                  | Ama              | ador             |                  |                    |
|--------------|------------------|------------------|------------------|------------------|--------------------|
| Year         | Bernal           | Amador West      | Amador East      | Mocho II         | Total              |
| 1974         | 49,651           | 52,916           | 80,671           | 29,821           | 213,060            |
| 1975         | 51,149           | 54,220           | 80,840           | 28,872           | 215,080            |
| 1976         | 54,180           | 56,319           | 86,194           | 29,012           | 225,705            |
| 1977         | 51,970           | 53,968           | 81,889           | 27,954           | 215,782            |
| 1978         | 50,272           | 52,077           | 79,541           | 27,751           | 209,641            |
| 1979         | 52,863           | 56,739           | 89,122           | 29,210           | 227,933            |
| 1980         | 55,952           | 60,000           | 94,014           | 29,500           | 239,466            |
| 1981         | 57,910           | 61,890           | 95,688           | 30,224           | 245,712            |
| 1982         | 57,623           | 61,228           | 93,235           | 29,156           | 241,242            |
| 1983         | 58,654           | 63,488           | 100,642          | 31,492           | 254,277            |
| 1984         | 59,021           | 64,418           | 102,569          | 31,626           | 257,635            |
| 1985         | 58,487           | 64,024           | 95,703           | 31,568           | 249,782            |
| 1986         | 56,723           | 60,837           | 95,019           | 27,719           | 240,298            |
| 1987         | 55,723           | 58,635           | 91,170           | 25,147           | 230,675            |
| 1988         | 54,486           | 53,217           | 83,377           | 25,672           | 216,752            |
| 1989         | 52,754           | 51,260           | 82,836           | 27,433           | 214,282            |
| 1990         | 50,712           | 50,879           | 80,834           | 27,321           | 209,746            |
| 1990         | 44,627           | 49,348           | 76,543           | 24,631           | 195,148            |
| 1991         |                  |                  | 74,569           |                  |                    |
|              | 29,663<br>29,749 | 35,438           |                  | 44,036           | 183,707            |
| 1993<br>1994 |                  | 38,787           | 83,668           | 58,498           | 210,702            |
|              | 30,941           | 39,437           | 88,405           | 56,713           | 215,496            |
| 1995         | 32,193           | 43,156           | 89,255           | 60,834           | 225,438            |
| 1996<br>1997 | 32,217           | 42,917           | 87,147           | 60,865           | 223,146            |
|              | 32,240           | 41,992           | 88,781           | 59,157           | 222,171            |
| 1998<br>1999 | 32,292           | 43,411           | 88,094           | 61,336           | 225,132            |
|              | 32,065           | 43,310           | 86,462           | 60,595           | 222,432            |
| 2000         | 31,894           | 42,591           | 87,539           | 59,947           | 221,971            |
| 2001         | 30,720           | 40,853<br>37,537 | 73,347           | 58,231           | 203,151<br>211,979 |
|              | 30,685           | · ·              | 84,101           | 59,655           | · ·                |
| 2003         | 30,597<br>30,518 | 41,563           | 87,464           | 60,749           | 220,372            |
| 2004         |                  | 43,784           | 79,394           | 59,614           | 213,311            |
| 2005<br>2006 | 31,969           | 48,734           | 93,624<br>91,801 | 61,720           | 236,047            |
| 2006         | 32,382           | 53,465<br>54,368 | •                | 60,685           | 238,333            |
|              | 32,401           | 54,368           | 90,431           | 54,733           | 231,934            |
| 2008         | 32,365           | 54,160<br>51,088 | 91,852           | 56,097<br>57,605 | 234,473            |
| 2009         | 32,350           | ,                | 91,709           |                  | 232,752            |
| 2010<br>2011 | 32,350           | 50,282           | 92,034           | 59,167           | 233,833            |
|              | 32,353           | 50,631           | 92,683           | 59,214           | 234,881            |
| 2012         | 31,772           | 47,442           | 90,429           | 58,154           | 227,798            |
| 2013         | 30,892           | 44,226           | 87,040           | 58,684           | 220,843            |
| 2014         | 30,313           | 42,806           | 82,580           | 53,961           | 209,661            |
| 2015         | 31,714           | 46,582           | 81,338           | 53,952           | 213,586            |
| 2016         | 32,205           | 53,885           | 82,970           | 57,583           | 226,642            |
| 2017         | 32,391           | 67,540           | 86,073           | 59,564           | 245,568            |
| 2018         | 32,409           | 71,452           | 85,745           | 56,347           | 245,954            |
| 2019         | 32,410           | 70,196           | 84,985           | 60,942           | 248,533            |
| 2020         | 32,361           | 61,215           | 81,401           | 56,701           | 231,679            |

Calculated as one aquifer
Sum of Upper and Lower Aquifers



## TABLE 11-2 DESCRIPTION OF HYDROLOGIC INVENTORY COMPONENTS LIVERMORE VALLEY GROUNDWATER BASIN

| COMPONENTS                 | DECODINETION/DEMARK                                                | Direct/   | HOW CALCULATED MEACURED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESTIMATED |
|----------------------------|--------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| COMPONENTS                 | DESCRIPTION/REMARK                                                 | Inairect  | HOW CALCULATED/MEASURED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACCURACY  |
| SUPPLY INDICES             | Discourt of the Control of the Office of                           | D:1       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5.      |
| Rainfall                   | Pleasanton rainfall (Parkside Office)                              |           | Measured by Zone 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5 in    |
| Evaporation                | Evaporation at Lake Del Valle Station                              | Direct    | Collected by DWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 in    |
| Streamflow                 | Arroyo Valle Streamflow if Lake Del Valle Dam did not exist        | Direct    | USGS Stream Gage Station AV_BLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 AF     |
| Water Year Type            | Indicator of Water Year in Sacramento Valley                       | Direct    | DWR California Data Exchange Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         |
| SUPPLY COMPONENTS          |                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| NATURAL STREAM RECHARGE    |                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ARROYO VALLE               | AV natural recharge.                                               | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| ARROYO MOCHO               | AM natural recharge.                                               | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| ARROYO LAS POSITAS         | ALP natural recharge.                                              | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| ARTIFICIAL RECHARGE        |                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ARROYO VALLE               | Total artificial recharge on Arroyo Valle minus AV_RC_PR           | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| ARROYO VALLE PRIOR RIGHTS  | AVBLC flow that would have recharged if no dam. Subset of AV_RC.   | Indirect  | Formula based on AVBLC flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 AF    |
| ARROYO MOCHO               | Total artificial recharge on Arroyo Mocho                          | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| ARROYO LAS POSITAS         | Total artificial recharge on Arroyo Las Positas                    | Indirect  | Stream Inflows - Stream Outflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 AF    |
| INJECTION WELL RECHARGE    | Injection at Hop 6 from 1998 to 2000                               | Direct    | Metered by Zone 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 AF     |
| RAINFALL RECHARGE          | Recharge from rainfall                                             | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000 AF   |
| PIPE LEAKAGE               | Pipe leakage that recharges the GW basin                           | Indirect  | Estimated using length and age of pipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500 AF    |
| APPLIED WATER RECHARGE     |                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| URBAN MUNICIPAL (GW & SBA) | Applied recharge in urban area - delivered water (gw & sba)        | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 AF    |
| URBAN RECYCLED WATER       | Applied water recharge from urban area - recycled water            | Indirect  | Calculated using Wastewater Plant deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 AF     |
| AGRICULTURAL (SBA)         | Total applied recharge from 'untreated' ag sources (untreated SBA) | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 AF    |
| AGRICULTURAL (GW)          | Total applied water recharge from groundwater ag sources           |           | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 AF    |
| GOLF COURSES (GW)          | Applied water from golf courses on groundwater                     | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 AF    |
| GOLF COURSES (RW)          | Applied water from golf courses from recycled water                | Indirect  | Calculated using Wastewater Plant deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 AF     |
| SUBSURFACE BASIN INFLOW    | Subsurface Inflow from Northern Fringe Basin                       | Indirect  | Estimated historically groundwater contours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 AF    |
| DEMAND COMPONENTS          | ge zaem                                                            |           | grammaria marana na marana |           |
| MUNICIPAL PUMPING          |                                                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ZONE 7                     | Total pumping by Zone 7, including pumping to waste                | Direct    | Metered by Zone 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 AF     |
| DSRSD                      | Pumping by Zone 7 for DSRSD.                                       | Direct    | DSRSD Groundwater Pumping Quota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 AF      |
| PLEASANTON                 | Pumping by Pleasanton.                                             |           | Metered by Pleasatnon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 AF     |
| CALIFORNIA WATER SERVICE   | Pumping by CWS.                                                    |           | Metered by CWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 AF     |
| SFPUC                      | Pumping by SF Public Utilities Commission                          | Direct    | Metered by SFPUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 AF     |
| FAIRGROUNDS                | Pumping by Alameda County Fairgrounds                              | Indirect  | Metered by Fairgrounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 AF     |
| DOMESTIC                   | Pumping from active domestic, supply, and potable wells            | Indirect  | Estimated: Number of Wells x 0.5 AF/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 AF     |
| GOLF COURSES               | Turnpring from delive democrac, cuppiy, and perable world          | in an oot | Estimated. Hamber of Profile X 0.0 7 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00711     |
| CASTLEWOOD GOLF COURSE     | Pumping for Castlewood Golf Course                                 | Indirect  | Estimated using historical meter data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 AF     |
| TRI VALLEY GOLF CENTER     | Pumping for TriValley Golf Driving Range                           | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 AF     |
| AGRICULTURAL PUMPING       | Unmetered pumping for agriculture                                  | Indirect  | Calculated by Areal Recharge Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 AF    |
| MINING                     | Offinition of partifying for agriculture                           | manect    | Calculated by Alcal Recharge Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 /1    |
| EXPORT                     | Total mining area releases that leave the begin                    | Indirect  | Calculated from metered data and stream recharge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 AF     |
|                            | Total mining area releases that leave the basin                    | Indirect  | Calculated from metered data and stream recharge rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| EVAPORATION                | Pond evaporation & rainfall.                                       |           | Calculated using lake area, evaporation, and rainfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 AF    |
| PROCESSING                 | Mining Area processing losses                                      | Indirect  | Estimated at 700 AF/Yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 AF    |
| SUBSURFACE BASIN OUTFLOW   | Basin overflow leaving basin                                       | indirect  | Formula based on GW elevation and synoptic data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 AF    |



#### TABLE 11-3 HISTORICAL GROUNDWATER STORAGE HYDROLOGIC INVENTORY (HI) METHOD

1974-2020 WATER YEARS (in Acre-Feet, except where indicated)

|                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                              |                                                                                                |                                                                                                 |                                                                                                 |                                                                                                    |                                                                                                     | WATER                                                                                              | R YEAR (O                                                                                          | ct - Sep)                                                                                         |                                                                                                  |                                                                                                 |                                                                                                      |                                                                                                 |                                                                                                   |                                                                                                  |                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| COMPONENTS                                                                                                                                                                                                                                                              | 4074                                                                                           | 1975                                                                                         | 1976                                                                                           | 4077                                                                                            | 4070                                                                                            | 1979                                                                                               | 1980                                                                                                | 1981                                                                                               | •                                                                                                  |                                                                                                   | 1984                                                                                             | 4005                                                                                            | 1986                                                                                                 | 1987                                                                                            | 4000                                                                                              | 4000                                                                                             | 4000                                                                                         |
| INDICES                                                                                                                                                                                                                                                                 | 1974                                                                                           | 19/5                                                                                         | 1976                                                                                           | 1977                                                                                            | 1978                                                                                            | 1979                                                                                               | 1980                                                                                                | 1981                                                                                               | 1982                                                                                               | 1983                                                                                              | 1984                                                                                             | 1985                                                                                            | 1986                                                                                                 | 1987                                                                                            | 1988                                                                                              | 1989                                                                                             | 1990                                                                                         |
| -                                                                                                                                                                                                                                                                       | 16.1                                                                                           | 110                                                                                          | 6.0                                                                                            | 6.0                                                                                             | 10 E                                                                                            | 12.6                                                                                               | 17.6                                                                                                | 10.2                                                                                               | 24.4                                                                                               | 22.0                                                                                              | 12.0                                                                                             | 10.6                                                                                            | 10.0                                                                                                 | 0.0                                                                                             | 0.7                                                                                               | 11.0                                                                                             | 0.4                                                                                          |
| Rainfall at Livermore (in)                                                                                                                                                                                                                                              | 16.1                                                                                           | 14.8                                                                                         | 6.2                                                                                            | 6.0                                                                                             | 18.5                                                                                            | 13.6                                                                                               | 17.6                                                                                                | 10.3                                                                                               | 24.4                                                                                               | 32.0                                                                                              | 13.0                                                                                             | 12.6                                                                                            | 19.8                                                                                                 | 8.9                                                                                             | 8.7                                                                                               | 11.2                                                                                             | 9.4                                                                                          |
| 8 Station Rain Index (N. CA)(in)                                                                                                                                                                                                                                        | 78.6                                                                                           | 48.8                                                                                         | 28.3                                                                                           | 19.0                                                                                            | 71.6                                                                                            | 39.1                                                                                               | 59.6                                                                                                | 37.6                                                                                               | 84.8                                                                                               | 88.5                                                                                              | 58.1                                                                                             | 37.8                                                                                            | 72.1                                                                                                 | 28.6                                                                                            | 34.9                                                                                              | 50.1                                                                                             | 36.0                                                                                         |
| Evap at Lake Del Valle (in)                                                                                                                                                                                                                                             | 60.9                                                                                           | 62.7                                                                                         | 63.5                                                                                           | 66.0                                                                                            | 64.2                                                                                            | 67.7                                                                                               | 59.7                                                                                                | 72.1                                                                                               | 60.5                                                                                               | 59.7                                                                                              | 70.2                                                                                             | 64.9                                                                                            | 61.1                                                                                                 | 64.0                                                                                            | 66.9                                                                                              | 63.6                                                                                             | 65.9                                                                                         |
| Arroyo Valle Stream flow (AF)                                                                                                                                                                                                                                           | 30538                                                                                          | 28307                                                                                        | 475                                                                                            | 177                                                                                             | 43749                                                                                           | 9721                                                                                               | 45800                                                                                               | 5817                                                                                               | 61427                                                                                              | 125882                                                                                            | 25653                                                                                            | 7282                                                                                            | 67903                                                                                                | 3023                                                                                            | 1506                                                                                              | 1988                                                                                             | 815                                                                                          |
| Water Year Type*                                                                                                                                                                                                                                                        | W                                                                                              | W                                                                                            | С                                                                                              | С                                                                                               | AN                                                                                              | BN                                                                                                 | AN                                                                                                  | D                                                                                                  | W                                                                                                  | W                                                                                                 | W                                                                                                | D                                                                                               | W                                                                                                    | D                                                                                               | С                                                                                                 | D                                                                                                | С                                                                                            |
| SUPPLY                                                                                                                                                                                                                                                                  | 18,140                                                                                         | 21,437                                                                                       | 11,121                                                                                         | 8,683                                                                                           | 24,813                                                                                          | 22,213                                                                                             | 23,830                                                                                              | 18,821                                                                                             | 29,942                                                                                             | 35,412                                                                                            | 15,547                                                                                           | 8,784                                                                                           | 20,866                                                                                               | 6,670                                                                                           | 8,071                                                                                             | 11,170                                                                                           | 10,353                                                                                       |
| Injection Well Recharge                                                                                                                                                                                                                                                 | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| Stream Recharge                                                                                                                                                                                                                                                         | 11,340                                                                                         | 15,400                                                                                       | 6,910                                                                                          | 3,820                                                                                           | 16,330                                                                                          | 16,110                                                                                             | 16,480                                                                                              | 15,040                                                                                             | 16,420                                                                                             | 17,158                                                                                            | 9,486                                                                                            | 4,747                                                                                           | 9,045                                                                                                | 3,565                                                                                           | 4,549                                                                                             | 7,880                                                                                            | 7,026                                                                                        |
| Artificial Stream Recharge                                                                                                                                                                                                                                              | 3,509                                                                                          | 6,750                                                                                        | 5,695                                                                                          | 3,190                                                                                           | 6,442                                                                                           | 12,266                                                                                             | 10,211                                                                                              | 11,918                                                                                             | 5,952                                                                                              | 901                                                                                               | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 1,172                                                                                             | 4,320                                                                                            | 4,488                                                                                        |
| Arroyo Valle                                                                                                                                                                                                                                                            | 1,439                                                                                          | 4,320                                                                                        | 1,875                                                                                          | 1,300                                                                                           | 3,002                                                                                           | 5,886                                                                                              | 4,541                                                                                               | 6,328                                                                                              | 2,442                                                                                              | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 139                                                                                              | 304                                                                                          |
| Arroyo Mocho                                                                                                                                                                                                                                                            | 1,670                                                                                          | 1,830                                                                                        | 3,220                                                                                          | 1,290                                                                                           | 2,840                                                                                           | 5,780                                                                                              | 5,270                                                                                               | 5,130                                                                                              | 3,290                                                                                              | 901                                                                                               | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 1,172                                                                                             | 4,181                                                                                            | 4,184                                                                                        |
| Arroyo las Positas                                                                                                                                                                                                                                                      | 400                                                                                            | 600                                                                                          | 600                                                                                            | 600                                                                                             | 600                                                                                             | 600                                                                                                | 400                                                                                                 | 460                                                                                                | 220                                                                                                | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| Natural Stream Recharge                                                                                                                                                                                                                                                 | 6,060                                                                                          | 7,110                                                                                        | 1,100                                                                                          | 630                                                                                             | 8,850                                                                                           | 2,860                                                                                              | 4,850                                                                                               | 2,200                                                                                              | 8,620                                                                                              | 14,387                                                                                            | 8,326                                                                                            | 3,541                                                                                           | 8,168                                                                                                | 2,696                                                                                           | 2,653                                                                                             | 2,589                                                                                            | 2,250                                                                                        |
| Arroyo Valle                                                                                                                                                                                                                                                            | 2,400                                                                                          | 2,950                                                                                        | 360                                                                                            | 290                                                                                             | 2,450                                                                                           | 1,290                                                                                              | 1,750                                                                                               | 840                                                                                                | 2,970                                                                                              | 4,893                                                                                             | 2,580                                                                                            | 751                                                                                             | 2,831                                                                                                | 527                                                                                             | 679                                                                                               | 458                                                                                              | 418                                                                                          |
| Arroyo Mocho                                                                                                                                                                                                                                                            | 3,160                                                                                          | 3,760                                                                                        | 540                                                                                            | 140                                                                                             | 5,900                                                                                           | 1,170                                                                                              | 2,500                                                                                               | 880                                                                                                | 4,810                                                                                              | 8,514                                                                                             | 4,616                                                                                            | 1,716                                                                                           | 4,176                                                                                                | 843                                                                                             | 902                                                                                               | 809                                                                                              | 428                                                                                          |
| Arroyo las Positas                                                                                                                                                                                                                                                      | 500                                                                                            | 400                                                                                          | 200                                                                                            | 200                                                                                             | 500                                                                                             | 400                                                                                                | 600                                                                                                 | 480                                                                                                | 840                                                                                                | 980                                                                                               | 1,130                                                                                            | 1,074                                                                                           | 1,161                                                                                                | 1,326                                                                                           | 1,072                                                                                             | 1,322                                                                                            | 1,404                                                                                        |
| Arroyo Valle Prior Rights                                                                                                                                                                                                                                               | 1,771                                                                                          | 1,540                                                                                        | 115                                                                                            | 0                                                                                               | 1,038                                                                                           | 984                                                                                                | 1,419                                                                                               | 922                                                                                                | 1,848                                                                                              | 1,870                                                                                             | 1,160                                                                                            | 1,206                                                                                           | 877                                                                                                  | 869                                                                                             | 724                                                                                               | 971                                                                                              | 288                                                                                          |
| Rainfall Recharge                                                                                                                                                                                                                                                       | 3,031                                                                                          | 2,523                                                                                        | 0                                                                                              | 0                                                                                               | 4,398                                                                                           | 2,002                                                                                              | 3,891                                                                                               | 967                                                                                                | 11,423                                                                                             | 16,357                                                                                            | 3,110                                                                                            | 1,249                                                                                           | 9,008                                                                                                | 290                                                                                             | 398                                                                                               | 283                                                                                              | 141                                                                                          |
| Lake Recharge                                                                                                                                                                                                                                                           | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| Pipe Leakage                                                                                                                                                                                                                                                            | 31                                                                                             | 37                                                                                           | 44                                                                                             | 51                                                                                              | 60                                                                                              | 71                                                                                                 | 82                                                                                                  | 95                                                                                                 | 109                                                                                                | 124                                                                                               | 139                                                                                              | 155                                                                                             | 169                                                                                                  | 185                                                                                             | 200                                                                                               | 217                                                                                              | 233                                                                                          |
| Applied Water Recharge                                                                                                                                                                                                                                                  | 2,738                                                                                          | 2,477                                                                                        | 3,158                                                                                          | 3,022                                                                                           | 2,795                                                                                           | 3,041                                                                                              | 2,727                                                                                               | 2,089                                                                                              | 1,360                                                                                              | 1,344                                                                                             | 2,162                                                                                            | 1,884                                                                                           | 1,904                                                                                                | 1,860                                                                                           | 2,004                                                                                             | 1,630                                                                                            | 1,694                                                                                        |
| Urban - Municipal                                                                                                                                                                                                                                                       | 1,074                                                                                          | 766                                                                                          | 1,354                                                                                          | 1,375                                                                                           | 1,087                                                                                           | 1,179                                                                                              | 810                                                                                                 | 1,284                                                                                              | 668                                                                                                | 690                                                                                               | 1,253                                                                                            | 1,027                                                                                           | 998                                                                                                  | 1,328                                                                                           | 1,377                                                                                             | 1,053                                                                                            | 1,025                                                                                        |
| Urban - Recycled Water                                                                                                                                                                                                                                                  | 0                                                                                              | 0                                                                                            | 27                                                                                             | 16                                                                                              | 26                                                                                              | 13                                                                                                 | 21                                                                                                  | 7                                                                                                  | 12                                                                                                 | 8                                                                                                 | 16                                                                                               | 6                                                                                               | 12                                                                                                   | 8                                                                                               | 5                                                                                                 | 14                                                                                               | 5                                                                                            |
| Agricultural - Municipal (SBA)                                                                                                                                                                                                                                          | 74                                                                                             | 109                                                                                          | 157                                                                                            | 124                                                                                             | 95                                                                                              | 118                                                                                                | 147                                                                                                 | 182                                                                                                | 140                                                                                                | 165                                                                                               | 208                                                                                              | 182                                                                                             | 232                                                                                                  | 245                                                                                             | 289                                                                                               | 240                                                                                              | 265                                                                                          |
| Agricultural - Groundwater                                                                                                                                                                                                                                              | 384                                                                                            | 280                                                                                          | 513                                                                                            | 525                                                                                             | 352                                                                                             | 388                                                                                                | 281                                                                                                 | 241                                                                                                | 174                                                                                                | 139                                                                                               | 198                                                                                              | 210                                                                                             | 190                                                                                                  | 137                                                                                             | 152                                                                                               | 140                                                                                              | 153                                                                                          |
| Golf Courses - Groundwater                                                                                                                                                                                                                                              | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| Golf Courses - Recycled Wate                                                                                                                                                                                                                                            | 0                                                                                              | 0                                                                                            | 64                                                                                             | 68                                                                                              | 75                                                                                              | 73                                                                                                 | 73                                                                                                  | 60                                                                                                 | 54                                                                                                 | 63                                                                                                | 62                                                                                               | 55                                                                                              | 61                                                                                                   | 47                                                                                              | 63                                                                                                | 60                                                                                               | 64                                                                                           |
| Others                                                                                                                                                                                                                                                                  | 1,206                                                                                          | 1,322                                                                                        | 1,042                                                                                          | 915                                                                                             | 1,160                                                                                           | 1,270                                                                                              | 1,394                                                                                               | 315                                                                                                | 312                                                                                                | 279                                                                                               | 425                                                                                              | 404                                                                                             | 411                                                                                                  | 95                                                                                              | 118                                                                                               | 123                                                                                              | 182                                                                                          |
| Subsurface Basin Inflow                                                                                                                                                                                                                                                 | 1,000                                                                                          | 1,000                                                                                        | 1,010                                                                                          | 1,790                                                                                           | 1,230                                                                                           | 990                                                                                                | 650                                                                                                 | 630                                                                                                | 630                                                                                                | 430                                                                                               | 650                                                                                              | 750                                                                                             | 740                                                                                                  | 770                                                                                             | 920                                                                                               | 1,160                                                                                            | 1,260                                                                                        |
| DEMAND                                                                                                                                                                                                                                                                  | 18,618                                                                                         | 15,929                                                                                       | 15,432                                                                                         | 14,636                                                                                          | 12,871                                                                                          | 15,819                                                                                             | 15,727                                                                                              | 19,349                                                                                             | 18,349                                                                                             | 26,220                                                                                            | 19,750                                                                                           | 18,506                                                                                          | 22,550                                                                                               | 14,575                                                                                          | 17,176                                                                                            | 16,143                                                                                           | 16,045                                                                                       |
| Municipal Pumpage                                                                                                                                                                                                                                                       | 11,806                                                                                         | 9,881                                                                                        | 7,782                                                                                          | 6,721                                                                                           | 7,022                                                                                           | 8,207                                                                                              | 6,982                                                                                               | 7,361                                                                                              | 7,281                                                                                              | 7,965                                                                                             | 8,473                                                                                            | 7,990                                                                                           | 8,652                                                                                                | 8,152                                                                                           | 9,431                                                                                             | 10,393                                                                                           | 11,255                                                                                       |
| Zone 7 (excluding DSRSD)                                                                                                                                                                                                                                                | 5,403                                                                                          | 3,090                                                                                        | 1,292                                                                                          | 309                                                                                             | 776                                                                                             | 816                                                                                                | 41                                                                                                  | 0                                                                                                  | 0                                                                                                  | 25                                                                                                | 348                                                                                              | 1,199                                                                                           | 1,163                                                                                                | 480                                                                                             | 2,017                                                                                             | 3,213                                                                                            | 3,327                                                                                        |
| Zone 7 for DSRSD                                                                                                                                                                                                                                                        | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| City of Pleasanton                                                                                                                                                                                                                                                      | 2,264                                                                                          | 2,497                                                                                        | 1,707                                                                                          | 3,271                                                                                           | 2,640                                                                                           | 3,273                                                                                              | 2,961                                                                                               | 3,089                                                                                              | 3,565                                                                                              | 3,886                                                                                             | 3,486                                                                                            | 3,056                                                                                           | 3,705                                                                                                | 3,310                                                                                           | 3,548                                                                                             | 3,316                                                                                            | 3,856                                                                                        |
| Cal. Water Service                                                                                                                                                                                                                                                      | 2.612                                                                                          | 2,852                                                                                        | 2.781                                                                                          | 1.312                                                                                           | 1.964                                                                                           | 2.358                                                                                              | 2.489                                                                                               | 2.695                                                                                              | 2.286                                                                                              | 2.660                                                                                             | 3.035                                                                                            | 2.788                                                                                           | 2,774                                                                                                | 3,276                                                                                           | 2,761                                                                                             | 2.850                                                                                            | 3,073                                                                                        |
| Camp Parks                                                                                                                                                                                                                                                              | 769                                                                                            | 808                                                                                          | 980                                                                                            | 925                                                                                             | 796                                                                                             | 881                                                                                                | 819                                                                                                 | 808                                                                                                | 713                                                                                                | 630                                                                                               | 647                                                                                              | 40                                                                                              | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| SFWD                                                                                                                                                                                                                                                                    | 302                                                                                            | 242                                                                                          | 495                                                                                            | 374                                                                                             | 397                                                                                             | 413                                                                                                | 372                                                                                                 | 402                                                                                                | 348                                                                                                | 321                                                                                               | 378                                                                                              | 353                                                                                             | 484                                                                                                  | 491                                                                                             | 472                                                                                               | 443                                                                                              | 362                                                                                          |
| Fairgrounds                                                                                                                                                                                                                                                             | 200                                                                                            | 200                                                                                          | 200                                                                                            | 200                                                                                             | 200                                                                                             | 200                                                                                                | 200                                                                                                 | 267                                                                                                | 217                                                                                                | 242                                                                                               | 281                                                                                              | 272                                                                                             | 280                                                                                                  | 280                                                                                             | 280                                                                                               | 280                                                                                              | 280                                                                                          |
| Domestic                                                                                                                                                                                                                                                                | 100                                                                                            | 100                                                                                          | 100                                                                                            | 100                                                                                             | 100                                                                                             | 100                                                                                                | 100                                                                                                 | 100                                                                                                | 100                                                                                                | 100                                                                                               | 100                                                                                              | 100                                                                                             | 100                                                                                                  | 100                                                                                             | 100                                                                                               | 100                                                                                              | 100                                                                                          |
| Golf Courses                                                                                                                                                                                                                                                            | 156                                                                                            | 92                                                                                           | 227                                                                                            | 230                                                                                             | 149                                                                                             | 166                                                                                                | 0                                                                                                   | 0                                                                                                  | 52                                                                                                 | 101                                                                                               | 198                                                                                              | 182                                                                                             | 146                                                                                                  | 215                                                                                             | 253                                                                                               | 191                                                                                              | 257                                                                                          |
| 3S/1E 1P3                                                                                                                                                                                                                                                               | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 46                                                                                           |
| Castlewood                                                                                                                                                                                                                                                              | 156                                                                                            | 92                                                                                           | 227                                                                                            | 230                                                                                             | 149                                                                                             | 166                                                                                                | 0                                                                                                   |                                                                                                    | 52                                                                                                 | 101                                                                                               | 198                                                                                              | 182                                                                                             | 146                                                                                                  | 215                                                                                             | 253                                                                                               |                                                                                                  | 044                                                                                          |
|                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                              |                                                                                                |                                                                                                 |                                                                                                 |                                                                                                    |                                                                                                     | 0                                                                                                  |                                                                                                    |                                                                                                   |                                                                                                  |                                                                                                 |                                                                                                      |                                                                                                 |                                                                                                   | 191                                                                                              | 211                                                                                          |
| Tri-Valley Golf                                                                                                                                                                                                                                                         | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | 0                                                                                                | 0                                                                                               | 0                                                                                                    | 0                                                                                               | 0                                                                                                 | 191<br>0                                                                                         | 211<br>0                                                                                     |
| Tri-Valley Golf Agricultural Pumpage                                                                                                                                                                                                                                    |                                                                                                |                                                                                              |                                                                                                |                                                                                                 |                                                                                                 |                                                                                                    |                                                                                                     |                                                                                                    |                                                                                                    |                                                                                                   | 0<br>1,556                                                                                       | <i>0</i> 1,914                                                                                  | <i>0</i> 1,911                                                                                       |                                                                                                 |                                                                                                   |                                                                                                  |                                                                                              |
|                                                                                                                                                                                                                                                                         | 0                                                                                              | 0                                                                                            | 0                                                                                              | 0                                                                                               | 0                                                                                               | 0                                                                                                  | 0                                                                                                   | 0                                                                                                  | 0                                                                                                  | 0                                                                                                 | -                                                                                                |                                                                                                 | -                                                                                                    | 0                                                                                               | 0                                                                                                 | 0                                                                                                | 0                                                                                            |
| Agricultural Pumpage                                                                                                                                                                                                                                                    | 0<br>3,744                                                                                     | <i>0</i> <b>2,217</b>                                                                        | <i>0</i> <b>4,596</b>                                                                          | <i>0</i> <b>4,970</b>                                                                           | <i>o</i> <b>3,191</b>                                                                           | <i>0</i> 3,711                                                                                     | 2,628                                                                                               | 2,433                                                                                              | 0<br>1,295                                                                                         | 0<br>1,342                                                                                        | 1,556                                                                                            | 1,914                                                                                           | 1,911                                                                                                | <i>0</i> <b>1,470</b>                                                                           | 0<br>1,476                                                                                        | 0<br>1,166                                                                                       | <i>0</i> 1,478                                                                               |
| Agricultural Pumpage<br>SFWD<br>Concannon                                                                                                                                                                                                                               | 0<br><b>3,744</b><br>500                                                                       | 2,217<br>0                                                                                   | 0<br><b>4,596</b><br>62                                                                        | 9<br>4,970<br>304                                                                               | 3,191<br>252                                                                                    | 3,711<br>365<br>70                                                                                 | 2, <b>628</b><br>168                                                                                | 2,433<br>513<br>112                                                                                | 0<br>1,295<br>150                                                                                  | 0<br>1,342<br>549                                                                                 | <b>1,556</b><br>107<br>68                                                                        | <b>1,914</b><br>410                                                                             | <b>1,911</b> 543 60                                                                                  | 0<br>1,470<br>663                                                                               | 0<br>1,476<br>493                                                                                 | 0<br>1,166<br>359                                                                                | 0<br>1,478<br>548                                                                            |
| Agricultural Pumpage<br>SFWD                                                                                                                                                                                                                                            | 3,744<br>500<br>6                                                                              | 0<br>2,217<br>0<br>15                                                                        | 0<br>4,596<br>62<br>20                                                                         | 9<br>4,970<br>304<br>20                                                                         | 3,191<br>252<br>20                                                                              | 3,711<br>365                                                                                       | 2,628<br>168<br>250                                                                                 | 2,433<br>513                                                                                       | 0<br>1,295<br>150<br>0                                                                             | 0<br>1,342<br>549<br>0                                                                            | <b>1,556</b><br>107                                                                              | <b>1,914</b><br>410<br>0                                                                        | <b>1,911</b> 543                                                                                     | 0<br>1,470<br>663<br>26                                                                         | 0<br>1,476<br>493<br>59                                                                           | 0<br>1,166<br>359<br>0                                                                           | 0<br>1,478<br>548<br>0                                                                       |
| Agricultural Pumpage SFWD Concannon Calculated                                                                                                                                                                                                                          | 0<br>3,744<br>500<br>6<br>3,238                                                                | 0<br>2,217<br>0<br>15<br>2,202                                                               | 0<br>4,596<br>62<br>20<br>4,514                                                                | 9<br>4,970<br>304<br>20<br>4,646                                                                | 3,191<br>252<br>20<br>2,919                                                                     | 3,711<br>365<br>70<br>3,276                                                                        | 2,628<br>168<br>250<br>2,210                                                                        | 0<br>2,433<br>513<br>112<br>1,808                                                                  | 0<br>1,295<br>150<br>0<br>1,145                                                                    | 0<br>1,342<br>549<br>0<br>793                                                                     | <b>1,556</b><br>107<br>68<br>1,381                                                               | <b>1,914</b><br>410<br>0<br>1,504                                                               | 1,911<br>543<br>60<br>1,308                                                                          | 0<br>1,470<br>663<br>26<br>781                                                                  | 0<br>1,476<br>493<br>59<br>924                                                                    | 0<br>1,166<br>359<br>0<br>807                                                                    | 0<br>1,478<br>548<br>0<br>930                                                                |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use                                                                                                                                                                                                               | 0<br>3,744<br>500<br>6<br>3,238<br>3,068                                                       | 0<br>2,217<br>0<br>15<br>2,202<br>3,831                                                      | 0<br>4,596<br>62<br>20<br>4,514<br>3,054                                                       | 0<br>4,970<br>304<br>20<br>4,646<br>2,945                                                       | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800                                                | 0<br>3,711<br>365<br>70<br>3,276<br>3,751                                                          | 2,628<br>168<br>250<br>2,210<br>5,586                                                               | 2,433<br>513<br>112<br>1,808<br>9,005                                                              | 0<br>1,295<br>150<br>0<br>1,145<br>7,613                                                           | 0<br>1,342<br>549<br>0<br>793<br>13,953                                                           | 1,556<br>107<br>68<br>1,381<br>7,481                                                             | 1,914<br>410<br>0<br>1,504<br>7,402                                                             | 1,911<br>543<br>60<br>1,308<br>11,387                                                                | 0<br>1,470<br>663<br>26<br>781<br>4,353                                                         | 0<br>1,476<br>493<br>59<br>924<br>5,869                                                           | 0<br>1,166<br>359<br>0<br>807<br>4,484                                                           | 0<br>1,478<br>548<br>0<br>930<br>3,312                                                       |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export                                                                                                                                                                                                 | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219                                              | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200                                             | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690                                                | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470                                                | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800                                                | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000                                                 | 2,628<br>168<br>250<br>2,210<br>5,586<br>3,480                                                      | 2,433<br>513<br>112<br>1,808<br>9,005<br>6,530                                                     | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050                                                  | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760                                                 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340                                                    | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265                                                    | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858                                                       | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558                                                  | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443                                                  | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808                                                  | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665                                                |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production                                                                                                                                                  | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700                         | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700                          | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700                           | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700                           | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700                           | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700                            | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700                            | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700                           | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700                               | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700                              | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700                               | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700                               | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700                                  | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700                             | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700                             | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700                             | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700                           |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation                                                                                                                                                             | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149                                | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931                                 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664                                  | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775                                  | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158                                  | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051                                   | 2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406                                        | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775                                  | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863                                      | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493                                     | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441                                      | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437                                      | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829                                         | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095                                    | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726                                    | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976                                    | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947                                  |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production                                                                                                                                                  | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700                         | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700                          | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700                           | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700                           | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700                           | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700                            | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700                            | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700                           | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700                               | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700                              | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700                               | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700                               | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700                                  | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700                             | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700                             | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700                             | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700                           |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF)                                                                                                      | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700<br>0                    | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508            | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0                      | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0                      | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0                      | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394            | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530<br>8,103            | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528            | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593            | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192            | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203            | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200                      | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700<br>600<br>-1,684                 | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906            | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106            | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973            | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0                      |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow                                                                                                                        | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700                         | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700                          | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700                           | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700                           | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700                           | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150                     | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530                     | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550                    | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160                      | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960                     | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240                      | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200                      | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700<br>600                           | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600                      | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400                      | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700                             | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700                           |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                                               | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700<br>0<br>-478            | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508<br>217,030 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0<br>-4,311<br>212,719 | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0<br>-5,953            | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0<br>11,942<br>218,708 | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394<br>225,102 | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530<br>8,103<br>233,205 | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528<br>232,677 | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593            | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192<br>253,462 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203<br>249,259 | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200<br>-9,722<br>239,537 | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700<br>600<br>-1,684<br>237,853      | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906<br>229,947 | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106<br>220,841 | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973            | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0<br>-5,692<br>210,176 |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                                               | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700<br>0<br>-478<br>211,522 | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508<br>217,030 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0<br>-4,311<br>212,719 | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0<br>-5,953<br>206,766 | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0<br>11,942<br>218,708 | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394<br>225,102 | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530<br>8,103<br>233,205 | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528<br>232,677 | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593<br>244,270 | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192<br>253,462 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203<br>249,259 | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200<br>-9,722<br>239,537 | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700<br>600<br>-1,684<br>237,853      | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906<br>229,947 | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106<br>220,841 | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973<br>215,868 | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0<br>-5,692<br>210,176 |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF) INVENTORY (Rounded to TAF)                                                    | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700<br>0<br>-478<br>211,522 | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508<br>217,030 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0<br>-4,311<br>212,719 | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0<br>-5,953<br>206,766 | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0<br>11,942<br>218,708 | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394<br>225,102 | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530<br>8,103<br>233,205 | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528<br>232,677 | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593<br>244,270 | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192<br>253,462 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203<br>249,259 | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200<br>-9,722<br>239,537 | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>0<br>1,829<br>700<br>600<br>-1,684<br>237,853 | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906<br>229,947 | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106<br>220,841 | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973<br>215,868 | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0<br>-5,692<br>210,176 |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF) STORAGE CALCULATION INVENTORY (Rounded to TAF) GW ELEVATIONS (Rounded to TAF) | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>700<br>0<br>-478<br>211,522               | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508<br>217,030 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0<br>-4,311<br>212,719 | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0<br>-5,953<br>206,766 | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0<br>11,942<br>218,708 | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394<br>225,102 | 0 2,628 168 250 2,210 5,586 3,480 0 1,406 700 8,103 233,205                                         | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528<br>232,677 | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593<br>244,270 | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192<br>253,462 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203<br>249,259 | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200<br>-9,722<br>239,537 | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>1,829<br>700<br>600<br>-1,684<br>237,863      | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906<br>229,947 | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106<br>220,841 | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973<br>215,868 | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0<br>-5,692<br>210,176 |
| Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF) INVENTORY (Rounded to TAF)                                                    | 0<br>3,744<br>500<br>6<br>3,238<br>3,068<br>1,219<br>0<br>1,149<br>700<br>0<br>-478<br>211,522 | 0<br>2,217<br>0<br>15<br>2,202<br>3,831<br>2,200<br>0<br>931<br>700<br>0<br>5,508<br>217,030 | 0<br>4,596<br>62<br>20<br>4,514<br>3,054<br>690<br>0<br>1,664<br>700<br>0<br>-4,311<br>212,719 | 0<br>4,970<br>304<br>20<br>4,646<br>2,945<br>470<br>0<br>1,775<br>700<br>0<br>-5,953<br>206,766 | 0<br>3,191<br>252<br>20<br>2,919<br>2,658<br>800<br>0<br>1,158<br>700<br>0<br>11,942<br>218,708 | 0<br>3,711<br>365<br>70<br>3,276<br>3,751<br>2,000<br>0<br>1,051<br>700<br>150<br>6,394<br>225,102 | 0<br>2,628<br>168<br>250<br>2,210<br>5,586<br>3,480<br>0<br>1,406<br>700<br>530<br>8,103<br>233,205 | 0<br>2,433<br>513<br>112<br>1,808<br>9,005<br>6,530<br>0<br>1,775<br>700<br>550<br>-528<br>232,677 | 0<br>1,295<br>150<br>0<br>1,145<br>7,613<br>6,050<br>0<br>863<br>700<br>2,160<br>11,593<br>244,270 | 0<br>1,342<br>549<br>0<br>793<br>13,953<br>12,760<br>0<br>493<br>700<br>2,960<br>9,192<br>253,462 | 1,556<br>107<br>68<br>1,381<br>7,481<br>4,340<br>0<br>2,441<br>700<br>2,240<br>-4,203<br>249,259 | 1,914<br>410<br>0<br>1,504<br>7,402<br>4,265<br>0<br>2,437<br>700<br>1,200<br>-9,722<br>239,537 | 1,911<br>543<br>60<br>1,308<br>11,387<br>8,858<br>0<br>0<br>1,829<br>700<br>600<br>-1,684<br>237,853 | 0<br>1,470<br>663<br>26<br>781<br>4,353<br>558<br>0<br>3,095<br>700<br>600<br>-7,906<br>229,947 | 0<br>1,476<br>493<br>59<br>924<br>5,869<br>2,443<br>0<br>2,726<br>700<br>400<br>-9,106<br>220,841 | 0<br>1,166<br>359<br>0<br>807<br>4,484<br>1,808<br>0<br>1,976<br>700<br>100<br>-4,973<br>215,868 | 0<br>1,478<br>548<br>0<br>930<br>3,312<br>665<br>0<br>1,947<br>700<br>0<br>-5,692<br>210,176 |

Artificial Components Natural Components

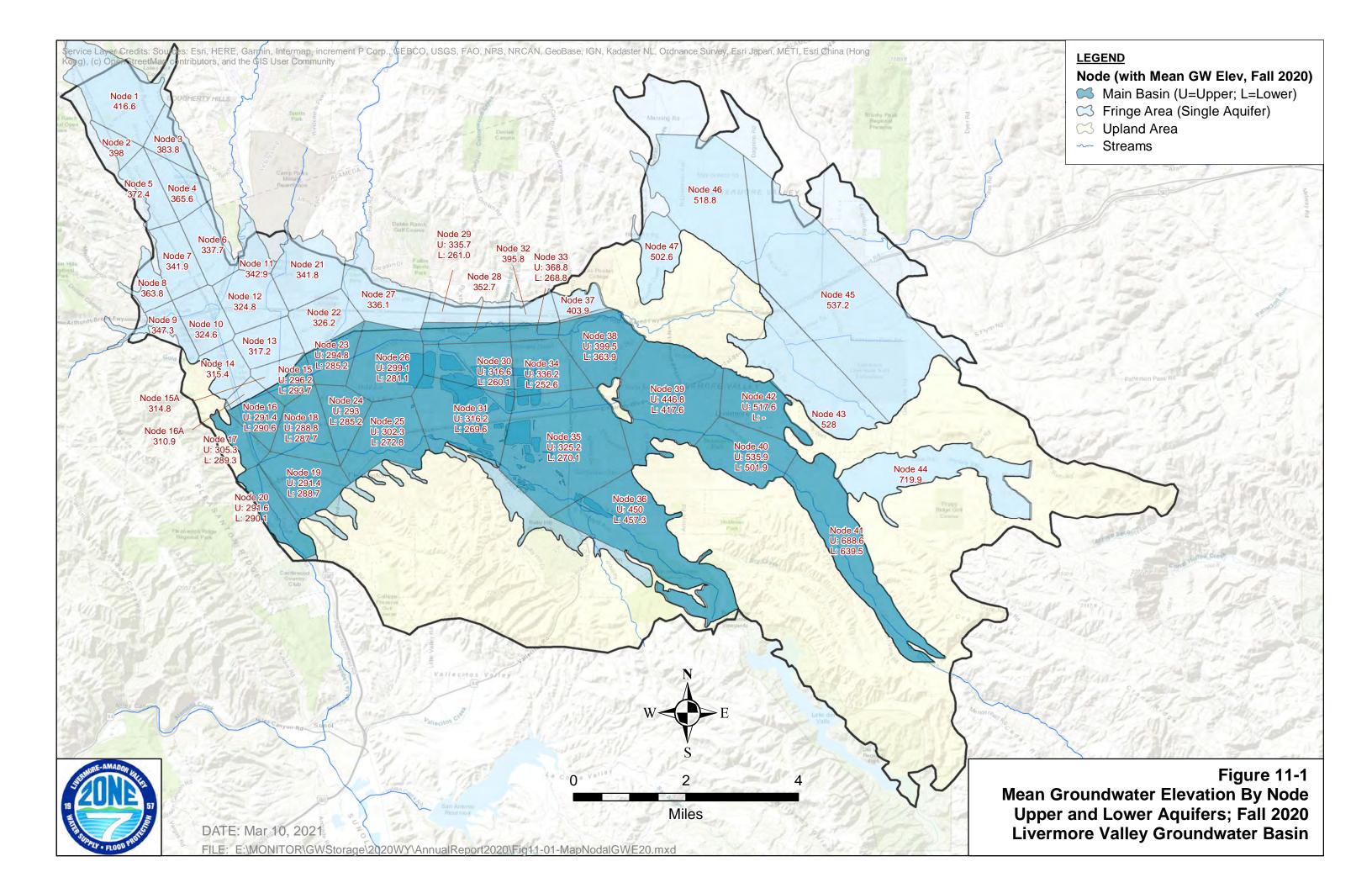


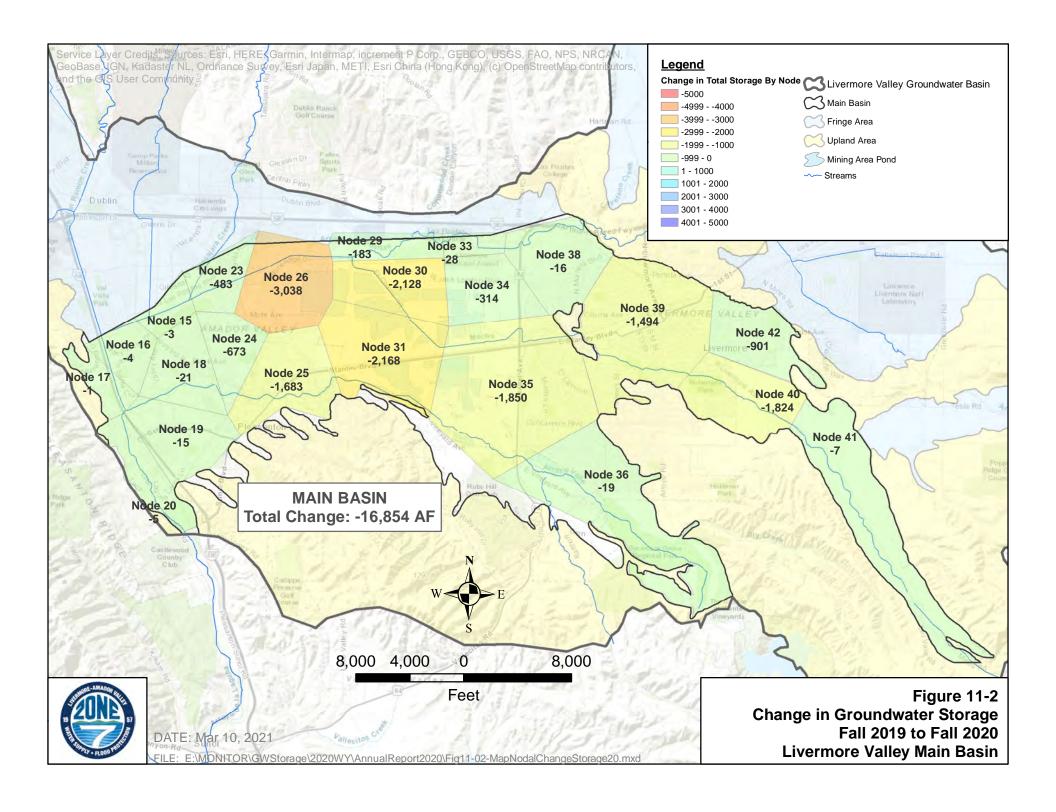
#### TABLE 11-3 HISTORICAL GROUNDWATER STORAGE HYDROLOGIC INVENTORY (HI) METHOD

1974-2020 WATER YEARS (in Acre-Feet, except where indicated)

|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                | WA                                                                                                | TER YEA                                                                                                                                                             | AR (Oct - S                                                                                                                                  | Sep)                                                                                                                                                      |                                                                                                                |                                                                                                         |                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                  | 1991                                                                                                                                                             | 1992                                                                                                                                                          | 1993                                                                                                                                                              | 1994                                                                                                                            | 1995                                                                                                                                                                    | 1996                                                                                                                                                               | 1997                                                                                                                                                         | 1998                                                                                                                                                           | 1999                                                                                              | 2000                                                                                                                                                                | 2001                                                                                                                                         | 2002                                                                                                                                                      | 2003                                                                                                           | 2004                                                                                                    | 2005                                                                                                                                     | 2006                                                                                                                                                        | 2007                                                                                                                                                                      | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2009                                                                                                                  | 2010                                                                                                           |
| INDICES                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                         | 1000                                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                           |                                                                                                                |                                                                                                         |                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                |
| Rainfall at Livermore (in)                                                                                                                                                                                                                                                                                                                                                                  | 11.3                                                                                                                                                             | 11.6                                                                                                                                                          | 21.3                                                                                                                                                              | 11.8                                                                                                                            | 21.3                                                                                                                                                                    | 20.0                                                                                                                                                               | 15.1                                                                                                                                                         | 25.3                                                                                                                                                           | 13.1                                                                                              | 14.1                                                                                                                                                                | 11.0                                                                                                                                         | 11.2                                                                                                                                                      | 17.0                                                                                                           | 13.1                                                                                                    | 19.3                                                                                                                                     | 17.5                                                                                                                                                        | 9.7                                                                                                                                                                       | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.4                                                                                                                  | 14.8                                                                                                           |
| 8 Station Rain Index (N. CA)(in)                                                                                                                                                                                                                                                                                                                                                            | 32.2                                                                                                                                                             | 36.0                                                                                                                                                          | 65.3                                                                                                                                                              | 31.8                                                                                                                            | 85.4                                                                                                                                                                    | 61.3                                                                                                                                                               | 68.8                                                                                                                                                         | 82.4                                                                                                                                                           | 54.8                                                                                              | 56.7                                                                                                                                                                | 33.0                                                                                                                                         | 46.3                                                                                                                                                      | 59.7                                                                                                           | 47.3                                                                                                    | 57.4                                                                                                                                     | 80.1                                                                                                                                                        | 37.3                                                                                                                                                                      | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.8                                                                                                                  | 53.6                                                                                                           |
| Evap at Lake Del Valle (in)                                                                                                                                                                                                                                                                                                                                                                 | 64.7                                                                                                                                                             | 68.2                                                                                                                                                          | 64.2                                                                                                                                                              | 65.5                                                                                                                            | 58.3                                                                                                                                                                    | 71.6                                                                                                                                                               | 69.5                                                                                                                                                         | 57.2                                                                                                                                                           | 61.0                                                                                              | 68.3                                                                                                                                                                | 68.5                                                                                                                                         | 73.2                                                                                                                                                      | 69.9                                                                                                           | 72.1                                                                                                    | 63.6                                                                                                                                     | 68.6                                                                                                                                                        | 68.9                                                                                                                                                                      | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.6                                                                                                                  | 64.0                                                                                                           |
| Arroyo Valle Stream flow (AF)                                                                                                                                                                                                                                                                                                                                                               | 9909                                                                                                                                                             | 11692                                                                                                                                                         | 52831                                                                                                                                                             | 3424                                                                                                                            | 67142                                                                                                                                                                   | 51058                                                                                                                                                              | 54115                                                                                                                                                        | 87819                                                                                                                                                          | 15169                                                                                             | 18949                                                                                                                                                               | 8156                                                                                                                                         | 7848                                                                                                                                                      | 19648                                                                                                          | 11410                                                                                                   | 26930                                                                                                                                    | 28325                                                                                                                                                       | 2027                                                                                                                                                                      | 18059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11231                                                                                                                 | 12914                                                                                                          |
| Water Year Type*                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                | C                                                                                                                                                             | AN                                                                                                                                                                | С                                                                                                                               | W                                                                                                                                                                       | W                                                                                                                                                                  | W                                                                                                                                                            | W                                                                                                                                                              | W                                                                                                 | AN                                                                                                                                                                  | D                                                                                                                                            | D                                                                                                                                                         | AN                                                                                                             | BN                                                                                                      | AN                                                                                                                                       | W                                                                                                                                                           | D                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                                                                                                                     | BN                                                                                                             |
| SUPPLY                                                                                                                                                                                                                                                                                                                                                                                      | 12.715                                                                                                                                                           | 10.610                                                                                                                                                        |                                                                                                                                                                   | 16.095                                                                                                                          | 29.095                                                                                                                                                                  | 22.556                                                                                                                                                             | 24.184                                                                                                                                                       | 27.853                                                                                                                                                         | 20.780                                                                                            | 23.211                                                                                                                                                              | 15.691                                                                                                                                       | 24.052                                                                                                                                                    | 29.840                                                                                                         | 19.778                                                                                                  | 31.021                                                                                                                                   | 23.960                                                                                                                                                      | 14.998                                                                                                                                                                    | 16.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.659                                                                                                                | 25.382                                                                                                         |
| Injection Well Recharge                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                | 0,010                                                                                                                                                         | 0                                                                                                                                                                 | 0,000                                                                                                                           | 0                                                                                                                                                                       | 0                                                                                                                                                                  | 0                                                                                                                                                            | 652                                                                                                                                                            | 1,524                                                                                             | 1,146                                                                                                                                                               | 10,001                                                                                                                                       | 0                                                                                                                                                         | 0                                                                                                              | 0                                                                                                       | 01,021                                                                                                                                   | 0                                                                                                                                                           | 0                                                                                                                                                                         | 0,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,000                                                                                                                 | 0                                                                                                              |
| Stream Recharge                                                                                                                                                                                                                                                                                                                                                                             | 8,347                                                                                                                                                            | 5,247                                                                                                                                                         | 14,714                                                                                                                                                            | 11,838                                                                                                                          | 13.058                                                                                                                                                                  | 11,109                                                                                                                                                             | 12,284                                                                                                                                                       | 13,603                                                                                                                                                         | 10,813                                                                                            | 12,842                                                                                                                                                              | 8,601                                                                                                                                        | 16,195                                                                                                                                                    | 21,483                                                                                                         | 12,885                                                                                                  | 21,025                                                                                                                                   | 13,418                                                                                                                                                      | 9.154                                                                                                                                                                     | 8,448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11,249                                                                                                                | 17,144                                                                                                         |
| Artificial Stream Recharge                                                                                                                                                                                                                                                                                                                                                                  | 3,261                                                                                                                                                            | 914                                                                                                                                                           | 5,621                                                                                                                                                             | 7,883                                                                                                                           | 4,672                                                                                                                                                                   | 2,968                                                                                                                                                              | 5,314                                                                                                                                                        | 2,343                                                                                                                                                          | 5.174                                                                                             | 8,019                                                                                                                                                               | 3,428                                                                                                                                        | 10,588                                                                                                                                                    | 11,409                                                                                                         | 8,084                                                                                                   | 11,143                                                                                                                                   | 4,583                                                                                                                                                       | 4,811                                                                                                                                                                     | 2.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,984                                                                                                                 | 6,773                                                                                                          |
| Artificial Stream Recharge  Arroyo Valle                                                                                                                                                                                                                                                                                                                                                    | 82                                                                                                                                                               | 412                                                                                                                                                           | 1,182                                                                                                                                                             | 798                                                                                                                             | 179                                                                                                                                                                     | 144                                                                                                                                                                | 1,827                                                                                                                                                        | 413                                                                                                                                                            | 1,181                                                                                             | 890                                                                                                                                                                 | 1,476                                                                                                                                        | 1,831                                                                                                                                                     | 1,547                                                                                                          | 1,670                                                                                                   | 2,277                                                                                                                                    | 1,216                                                                                                                                                       | 2,879                                                                                                                                                                     | 2,229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,104                                                                                                                 | 2,459                                                                                                          |
| Arroyo Mocho                                                                                                                                                                                                                                                                                                                                                                                | 3,178                                                                                                                                                            | 502                                                                                                                                                           | 4.439                                                                                                                                                             | 7.085                                                                                                                           | 4,493                                                                                                                                                                   | 2,824                                                                                                                                                              | 3,487                                                                                                                                                        | 1,930                                                                                                                                                          | 3,993                                                                                             | 7,129                                                                                                                                                               | 1,930                                                                                                                                        | 8,755                                                                                                                                                     | 9,862                                                                                                          | 6,414                                                                                                   | 8,698                                                                                                                                    | 3,205                                                                                                                                                       | 1,932                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,880                                                                                                                 | 4,314                                                                                                          |
| Arroyo las Positas                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                | 0                                                                                                                                                             | 0                                                                                                                                                                 | 0                                                                                                                               | 0                                                                                                                                                                       | 0                                                                                                                                                                  | 0                                                                                                                                                            | 0                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                   | 22                                                                                                                                           | 2                                                                                                                                                         | 0                                                                                                              | 0,414                                                                                                   | 168                                                                                                                                      | 162                                                                                                                                                         | 0                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                     | 0                                                                                                              |
| Natural Stream Recharge                                                                                                                                                                                                                                                                                                                                                                     | 4.418                                                                                                                                                            | 3.997                                                                                                                                                         | 8.247                                                                                                                                                             | 3.080                                                                                                                           | 7,259                                                                                                                                                                   | 7.743                                                                                                                                                              | 6.607                                                                                                                                                        | 10.533                                                                                                                                                         | 5.091                                                                                             | 4.178                                                                                                                                                               | 4.512                                                                                                                                        | 4.476                                                                                                                                                     | 8.462                                                                                                          | 3,458                                                                                                   | 9.589                                                                                                                                    | 6.905                                                                                                                                                       | 3.536                                                                                                                                                                     | 5,913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,018                                                                                                                 | 10.371                                                                                                         |
| Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                | 1,215                                                                                                                                                            | 970                                                                                                                                                           | 2,754                                                                                                                                                             | 735                                                                                                                             | 2,818                                                                                                                                                                   | 1,426                                                                                                                                                              | 2,753                                                                                                                                                        | 4,401                                                                                                                                                          | 1,796                                                                                             | 1,389                                                                                                                                                               | 2,440                                                                                                                                        | 2,259                                                                                                                                                     | 4,397                                                                                                          | 1,447                                                                                                   | 5,980                                                                                                                                    | 3,043                                                                                                                                                       | 1,941                                                                                                                                                                     | 4,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,958                                                                                                                 | 6,909                                                                                                          |
| Arroyo Mocho                                                                                                                                                                                                                                                                                                                                                                                | 1,883                                                                                                                                                            | 1,711                                                                                                                                                         | 3,903                                                                                                                                                             | 1,263                                                                                                                           | 3,144                                                                                                                                                                   | 5,226                                                                                                                                                              | 2,670                                                                                                                                                        | 4,560                                                                                                                                                          | 1,833                                                                                             | 1,539                                                                                                                                                               | 961                                                                                                                                          | 1,279                                                                                                                                                     | 2,980                                                                                                          | 1,082                                                                                                   | 2,854                                                                                                                                    | 3,104                                                                                                                                                       | 858                                                                                                                                                                       | 1,077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970                                                                                                                   | 2,547                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                         | -                                                                                                                                                                  | 1,184                                                                                                                                                        |                                                                                                                                                                | 1,633                                                                                             |                                                                                                                                                                     |                                                                                                                                              | 939                                                                                                                                                       |                                                                                                                |                                                                                                         |                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                |
| Arroyo las Positas                                                                                                                                                                                                                                                                                                                                                                          | 1,320                                                                                                                                                            | 1,315                                                                                                                                                         | 1,591                                                                                                                                                             | 1,082                                                                                                                           | 1,297                                                                                                                                                                   | 1,091                                                                                                                                                              |                                                                                                                                                              | 1,572                                                                                                                                                          |                                                                                                   | 1,250                                                                                                                                                               | 1,111                                                                                                                                        |                                                                                                                                                           | 1,085                                                                                                          | 929                                                                                                     | 755<br>293                                                                                                                               | 758                                                                                                                                                         | 737                                                                                                                                                                       | 806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,090                                                                                                                 | 915<br>0                                                                                                       |
| Arroyo Valle Prior Rights Rainfall Recharge                                                                                                                                                                                                                                                                                                                                                 | 668<br>1,838                                                                                                                                                     | 337<br><b>1,760</b>                                                                                                                                           | 846<br><b>10.761</b>                                                                                                                                              | 876<br><b>1.242</b>                                                                                                             | 1,127<br>13,243                                                                                                                                                         | 398<br><b>8,176</b>                                                                                                                                                | 362<br><b>8.634</b>                                                                                                                                          | 727<br><b>10.692</b>                                                                                                                                           | 548<br><b>5.540</b>                                                                               | 644<br><b>5,924</b>                                                                                                                                                 | 660<br><b>3.644</b>                                                                                                                          | 1,131<br><b>4,239</b>                                                                                                                                     | 1,612<br><b>4,899</b>                                                                                          | 1,343<br><b>3,192</b>                                                                                   | 6,378                                                                                                                                    | 1,930<br><b>6,969</b>                                                                                                                                       | 807<br><b>1.987</b>                                                                                                                                                       | 306<br>3,782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,247<br>3,375                                                                                                        | 4,315                                                                                                          |
| Lake Recharge                                                                                                                                                                                                                                                                                                                                                                               | 1,030                                                                                                                                                            | 1,700                                                                                                                                                         | 0,761                                                                                                                                                             | 0                                                                                                                               | 13,243                                                                                                                                                                  | 0,170                                                                                                                                                              | 0,034                                                                                                                                                        | 10,032                                                                                                                                                         | 0,540                                                                                             | 0,924                                                                                                                                                               | 0,044                                                                                                                                        |                                                                                                                                                           | 4,033                                                                                                          | 0,192                                                                                                   | 0,370                                                                                                                                    | 0,909                                                                                                                                                       | 0                                                                                                                                                                         | 0,762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,373                                                                                                                 | 4,313                                                                                                          |
| Pipe Leakage                                                                                                                                                                                                                                                                                                                                                                                | 249                                                                                                                                                              | 267                                                                                                                                                           | 285                                                                                                                                                               | 304                                                                                                                             | 324                                                                                                                                                                     | 344                                                                                                                                                                | 365                                                                                                                                                          | 387                                                                                                                                                            | 410                                                                                               | 434                                                                                                                                                                 | 461                                                                                                                                          | 490                                                                                                                                                       | 518                                                                                                            | 548                                                                                                     | 579                                                                                                                                      | 610                                                                                                                                                         | 642                                                                                                                                                                       | 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 708                                                                                                                   | 742                                                                                                            |
| Applied Water Recharge                                                                                                                                                                                                                                                                                                                                                                      | 602                                                                                                                                                              | 1.766                                                                                                                                                         | 1.440                                                                                                                                                             | 1,621                                                                                                                           | 1.480                                                                                                                                                                   | 2.007                                                                                                                                                              | 2.221                                                                                                                                                        | 1.709                                                                                                                                                          | 1,743                                                                                             | 1,960                                                                                                                                                               | 1.985                                                                                                                                        | 2.129                                                                                                                                                     | 1.940                                                                                                          | 2.153                                                                                                   | 2.039                                                                                                                                    | 1,962                                                                                                                                                       | 2.214                                                                                                                                                                     | 2,353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.327                                                                                                                 | 2.181                                                                                                          |
| Urban - Municipal                                                                                                                                                                                                                                                                                                                                                                           | 222                                                                                                                                                              | 1,288                                                                                                                                                         | 1,108                                                                                                                                                             | 1,252                                                                                                                           | 1,060                                                                                                                                                                   | 1.467                                                                                                                                                              | 1.632                                                                                                                                                        | 1,703                                                                                                                                                          | 1,743                                                                                             | 1,743                                                                                                                                                               | 1,770                                                                                                                                        | 1,888                                                                                                                                                     | 1,749                                                                                                          | 1,926                                                                                                   | 1,834                                                                                                                                    | 1,747                                                                                                                                                       | 1,983                                                                                                                                                                     | 2,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,064                                                                                                                 | 1,894                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                   | 1,252                                                                                                                           | 1,060                                                                                                                                                                   |                                                                                                                                                                    | 21                                                                                                                                                           | 1,472                                                                                                                                                          | 1,549                                                                                             |                                                                                                                                                                     | 1,770                                                                                                                                        | 30                                                                                                                                                        | 1,749                                                                                                          | 1,926                                                                                                   | 1,034                                                                                                                                    | 26                                                                                                                                                          | 24                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                    |                                                                                                                |
| Urban - Recycled Water                                                                                                                                                                                                                                                                                                                                                                      | 242                                                                                                                                                              | 0<br>279                                                                                                                                                      | 11<br>177                                                                                                                                                         | 192                                                                                                                             | 257                                                                                                                                                                     | 18<br>347                                                                                                                                                          | 401                                                                                                                                                          | 104                                                                                                                                                            | 57                                                                                                | 21<br>64                                                                                                                                                            | 59                                                                                                                                           | 30<br>67                                                                                                                                                  | 66                                                                                                             | 64                                                                                                      | 63                                                                                                                                       | 63                                                                                                                                                          | 62                                                                                                                                                                        | 7<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52<br>68                                                                                                              | 84<br>67                                                                                                       |
| Agricultural - Municipal (SBA)                                                                                                                                                                                                                                                                                                                                                              | 109                                                                                                                                                              | 133                                                                                                                                                           | 96                                                                                                                                                                | 192                                                                                                                             | 257<br>92                                                                                                                                                               | 100                                                                                                                                                                | 109                                                                                                                                                          | 26                                                                                                                                                             | 57<br>11                                                                                          |                                                                                                                                                                     | 11                                                                                                                                           | 13                                                                                                                                                        |                                                                                                                |                                                                                                         | 12                                                                                                                                       | 12                                                                                                                                                          | 12                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                |
| Agricultural - Groundwater                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                | 0                                                                                                                                                             | 96                                                                                                                                                                | 0                                                                                                                               | 92                                                                                                                                                                      | 0                                                                                                                                                                  | 0                                                                                                                                                            |                                                                                                                                                                | 49                                                                                                | 12                                                                                                                                                                  | 56                                                                                                                                           | 60                                                                                                                                                        | 12<br>56                                                                                                       | 12<br>61                                                                                                | 58                                                                                                                                       | 56                                                                                                                                                          | 63                                                                                                                                                                        | 13<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                    | 12                                                                                                             |
| Golf Courses - Groundwater                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                | _                                                                                                                                                             | •                                                                                                                                                                 | -                                                                                                                               | _                                                                                                                                                                       |                                                                                                                                                                    | -                                                                                                                                                            | 42                                                                                                                                                             |                                                                                                   | 55                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                           |                                                                                                                |                                                                                                         |                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                    | 60                                                                                                             |
| Golf Courses - Recycled Wate                                                                                                                                                                                                                                                                                                                                                                | r 26<br>0                                                                                                                                                        | 66<br>0                                                                                                                                                       | 48<br>0                                                                                                                                                           | 63<br>0                                                                                                                         | 58<br>0                                                                                                                                                                 | 75<br>0                                                                                                                                                            | 58<br>0                                                                                                                                                      | 50<br>0                                                                                                                                                        | 65<br>0                                                                                           | 66<br>0                                                                                                                                                             | 69<br>0                                                                                                                                      | 72<br>0                                                                                                                                                   | 47<br>0                                                                                                        | 75<br>0                                                                                                 | 58<br>0                                                                                                                                  | 59<br>0                                                                                                                                                     | 71<br>0                                                                                                                                                                   | 74<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66<br>0                                                                                                               | 64<br>0                                                                                                        |
| Others Subsurface Basin Inflow                                                                                                                                                                                                                                                                                                                                                              | 1,680                                                                                                                                                            | 1,570                                                                                                                                                         | 1,330                                                                                                                                                             | 1,090                                                                                                                           | 990                                                                                                                                                                     | 920                                                                                                                                                                | 680                                                                                                                                                          | 810                                                                                                                                                            | <b>750</b>                                                                                        | 906                                                                                                                                                                 | 1,000                                                                                                                                        | 1,000                                                                                                                                                     | 1,000                                                                                                          | 1,000                                                                                                   | 1,000                                                                                                                                    | 1,000                                                                                                                                                       | 1,000                                                                                                                                                                     | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,000                                                                                                                 | 1,000                                                                                                          |
| DEMAND                                                                                                                                                                                                                                                                                                                                                                                      | 21.104                                                                                                                                                           | 17,237                                                                                                                                                        | 13.555                                                                                                                                                            | 15.503                                                                                                                          | 16.064                                                                                                                                                                  | 20.683                                                                                                                                                             | 25.574                                                                                                                                                       | 25,342                                                                                                                                                         | 25.691                                                                                            | 26,885                                                                                                                                                              | 27,357                                                                                                                                       | 23.991                                                                                                                                                    | 21.531                                                                                                         | 24.338                                                                                                  | 17,828                                                                                                                                   | 15.169                                                                                                                                                      | 18.636                                                                                                                                                                    | 19.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.656                                                                                                                | 21.091                                                                                                         |
| Municipal Pumpage                                                                                                                                                                                                                                                                                                                                                                           | 17,355                                                                                                                                                           | 13,331                                                                                                                                                        | 9,132                                                                                                                                                             | 6,499                                                                                                                           | 4,594                                                                                                                                                                   | 6,324                                                                                                                                                              | 8,824                                                                                                                                                        | 10,264                                                                                                                                                         | 11,832                                                                                            | 15,520                                                                                                                                                              | 17,806                                                                                                                                       | 19,307                                                                                                                                                    | 17,123                                                                                                         | 19,635                                                                                                  | 14,686                                                                                                                                   | 11,697                                                                                                                                                      | 12,681                                                                                                                                                                    | 13,516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,022                                                                                                                | 16,064                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                             | 17,355                                                                                                                                                           | 13,331                                                                                                                                                        | 9,132                                                                                                                                                             | 6,499                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                                              | 10,204                                                                                                                                                         | 11,032                                                                                            | 15,520                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                           |                                                                                                                |                                                                                                         |                                                                                                                                          | 11,097                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,022                                                                                                                | 10,004                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                             | 0.110                                                                                                                                                            | E 126                                                                                                                                                         | 2 215                                                                                                                                                             | 242                                                                                                                             | 260                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                              | 4 600                                                                                                                                                          | 4.040                                                                                             | 6 1 10                                                                                                                                                              | 0.064                                                                                                                                        |                                                                                                                                                           |                                                                                                                |                                                                                                         |                                                                                                                                          | 2 157                                                                                                                                                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.420                                                                                                                 | 0.074                                                                                                          |
| Zone 7 (excluding DSRSD)                                                                                                                                                                                                                                                                                                                                                                    | 8,119                                                                                                                                                            | 5,136                                                                                                                                                         | 2,215                                                                                                                                                             | 213                                                                                                                             | 368                                                                                                                                                                     | 2,388                                                                                                                                                              | 1,565                                                                                                                                                        | 1,682                                                                                                                                                          | 4,912                                                                                             | 6,140                                                                                                                                                               | 9,864                                                                                                                                        | 11,047                                                                                                                                                    | 7,734                                                                                                          | 11,175                                                                                                  | 6,213                                                                                                                                    | 3,157                                                                                                                                                       | 4,146                                                                                                                                                                     | 6,210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,439                                                                                                                 | 8,274                                                                                                          |
| Zone 7 for DSRSD                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                | 0                                                                                                                                                             | 0                                                                                                                                                                 | 0                                                                                                                               | 0                                                                                                                                                                       | 0                                                                                                                                                                  | 0                                                                                                                                                            | 0                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                                                                   | 0                                                                                                                                            | 0                                                                                                                                                         | 645                                                                                                            | 645                                                                                                     | 645                                                                                                                                      | 645                                                                                                                                                         | 4,146<br>645                                                                                                                                                              | 6,210<br>645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 645                                                                                                                   | 645                                                                                                            |
| Zone 7 for DSRSD<br>City of Pleasanton                                                                                                                                                                                                                                                                                                                                                      | 0<br>4,164                                                                                                                                                       | 0<br>3,368                                                                                                                                                    | 0<br>3,252                                                                                                                                                        | 0<br>2,578                                                                                                                      | 0<br>1,262                                                                                                                                                              | 0<br>1,333                                                                                                                                                         | 0<br>3,208                                                                                                                                                   | 0<br>3,935                                                                                                                                                     | 0<br>2,563                                                                                        | 0<br>4,558                                                                                                                                                          | 0<br>3,112                                                                                                                                   | 0<br>3,579                                                                                                                                                | 645<br>3,674                                                                                                   | 645<br>3,688                                                                                            | 645<br>3,604                                                                                                                             | 645<br>3,587                                                                                                                                                | 4,146<br>645<br>3,638                                                                                                                                                     | 6,210<br>645<br>2,387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 645<br>3,660                                                                                                          | 645<br>3,280                                                                                                   |
| Zone 7 for DSRSD<br>City of Pleasanton<br>Cal. Water Service                                                                                                                                                                                                                                                                                                                                | 0<br>4,164<br>3,966                                                                                                                                              | 0<br>3,368<br>3,744                                                                                                                                           | 0<br>3,252<br>2,570                                                                                                                                               | 0<br>2,578<br>2,626                                                                                                             | 0<br>1,262<br>2,053                                                                                                                                                     | 0<br>1,333<br>1,551                                                                                                                                                | 0<br>3,208<br>2,947                                                                                                                                          | 0<br>3,935<br>3,595                                                                                                                                            | 0<br>2,563<br>3,271                                                                               | 0<br>4,558<br>3,567                                                                                                                                                 | 0<br>3,112<br>3,707                                                                                                                          | 0<br>3,579<br>3,458                                                                                                                                       | 645<br>3,674<br>3,979                                                                                          | 645<br>3,688<br>2,911                                                                                   | 645<br>3,604<br>3,166                                                                                                                    | 645<br>3,587<br>3,106                                                                                                                                       | 4,146<br>645<br>3,638<br>2,971                                                                                                                                            | 6,210<br>645<br>2,387<br>3,143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 645<br>3,660<br>3,123                                                                                                 | 645<br>3,280<br>2,844                                                                                          |
| Zone 7 for DSRSD<br>City of Pleasanton<br>Cal. Water Service<br>Camp Parks                                                                                                                                                                                                                                                                                                                  | 0<br>4,164<br>3,966<br>0                                                                                                                                         | 0<br>3,368<br>3,744<br>3                                                                                                                                      | 0<br>3,252<br>2,570<br>0                                                                                                                                          | 0<br>2,578<br>2,626<br>0                                                                                                        | 0<br>1,262<br>2,053<br>0                                                                                                                                                | 0<br>1,333<br>1,551<br>0                                                                                                                                           | 0<br>3,208<br>2,947<br>0                                                                                                                                     | 0<br>3,935<br>3,595<br>0                                                                                                                                       | 0<br>2,563<br>3,271<br>0                                                                          | 0<br>4,558<br>3,567<br>0                                                                                                                                            | 0<br>3,112<br>3,707<br>0                                                                                                                     | 0<br>3,579<br>3,458<br>0                                                                                                                                  | 645<br>3,674<br>3,979<br>0                                                                                     | 645<br>3,688<br>2,911<br>0                                                                              | 645<br>3,604<br>3,166<br>0                                                                                                               | 645<br>3,587<br>3,106<br>0                                                                                                                                  | 4,146<br>645<br>3,638<br>2,971<br>0                                                                                                                                       | 6,210<br>645<br>2,387<br>3,143<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 645<br>3,660<br>3,123<br>0                                                                                            | 645<br>3,280<br>2,844<br>0                                                                                     |
| Zone 7 for DSRSD<br>City of Pleasanton<br>Cal. Water Service<br>Camp Parks<br>SFWD                                                                                                                                                                                                                                                                                                          | 0<br>4,164<br>3,966<br>0<br>408                                                                                                                                  | 0<br>3,368<br>3,744<br>3<br>410                                                                                                                               | 0<br>3,252<br>2,570<br>0<br>414                                                                                                                                   | 0<br>2,578<br>2,626<br>0<br>396                                                                                                 | 0<br>1,262<br>2,053<br>0<br>370                                                                                                                                         | 0<br>1,333<br>1,551<br>0<br>411                                                                                                                                    | 0<br>3,208<br>2,947<br>0<br>477                                                                                                                              | 0<br>3,935<br>3,595<br>0<br>460                                                                                                                                | 0<br>2,563<br>3,271<br>0<br>380                                                                   | 0<br>4,558<br>3,567<br>0<br>532                                                                                                                                     | 0<br>3,112<br>3,707<br>0<br>472                                                                                                              | 0<br>3,579<br>3,458<br>0<br>448                                                                                                                           | 645<br>3,674<br>3,979<br>0<br>423                                                                              | 645<br>3,688<br>2,911<br>0<br>481                                                                       | 645<br>3,604<br>3,166<br>0<br>436                                                                                                        | 645<br>3,587<br>3,106<br>0<br>467                                                                                                                           | 4,146<br>645<br>3,638<br>2,971<br>0<br>494                                                                                                                                | 6,210<br>645<br>2,387<br>3,143<br>0<br>492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 645<br>3,660<br>3,123<br>0<br>446                                                                                     | 645<br>3,280<br>2,844<br>0<br>417                                                                              |
| Zone 7 for DSRSD<br>City of Pleasanton<br>Cal. Water Service<br>Camp Parks<br>SFWD<br>Fairgrounds                                                                                                                                                                                                                                                                                           | 0<br>4,164<br>3,966<br>0<br>408<br>346                                                                                                                           | 0<br>3,368<br>3,744<br>3<br>410<br>336                                                                                                                        | 0<br>3,252<br>2,570<br>0<br>414<br>282                                                                                                                            | 0<br>2,578<br>2,626<br>0<br>396<br>325                                                                                          | 0<br>1,262<br>2,053<br>0<br>370<br>285                                                                                                                                  | 0<br>1,333<br>1,551<br>0<br>411<br>343                                                                                                                             | 0<br>3,208<br>2,947<br>0<br>477<br>342                                                                                                                       | 0<br>3,935<br>3,595<br>0<br>460<br>230                                                                                                                         | 0<br>2,563<br>3,271<br>0<br>380<br>333                                                            | 0<br>4,558<br>3,567<br>0<br>532<br>369                                                                                                                              | 0<br>3,112<br>3,707<br>0<br>472<br>318                                                                                                       | 0<br>3,579<br>3,458<br>0<br>448<br>423                                                                                                                    | 645<br>3,674<br>3,979<br>0<br>423<br>327                                                                       | 645<br>3,688<br>2,911<br>0<br>481<br>365                                                                | 645<br>3,604<br>3,166<br>0<br>436<br>284                                                                                                 | 645<br>3,587<br>3,106<br>0<br>467<br>441                                                                                                                    | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443                                                                                                                         | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 645<br>3,660<br>3,123<br>0<br>446<br>335                                                                              | 645<br>3,280<br>2,844<br>0<br>417<br>284                                                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic                                                                                                                                                                                                                                                                                                 | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100                                                                                                                    | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113                                                                                                                 | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113                                                                                                                     | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116                                                                                   | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116                                                                                                                           | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117                                                                                                                      | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117                                                                                                                | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113                                                                                                                  | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116                                                     | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109                                                                                                                       | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109                                                                                                | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134                                                                                                             | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134                                                                | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167                                                         | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131                                                                                          | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93                                                                                                              | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96                                                                                                                   | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123                                                                       | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112                                                                |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses                                                                                                                                                                                                                                                                                    | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252                                                                                                             | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222                                                                                                          | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286                                                                                                              | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245                                                                            | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139                                                                                                                    | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182                                                                                                               | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169                                                                                                         | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249                                                                                                           | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256                                              | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245                                                                                                                | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223                                                                                         | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218                                                                                                      | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208                                                         | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203                                                  | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207                                                                                   | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199                                                                                                       | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249                                                                                                            | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250                                                                | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208                                                         |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 38/1E 1P3                                                                                                                                                                                                                                                                          | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252                                                                                                             | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36                                                                                                    | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286                                                                                                              | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245                                                                            | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139                                                                                                                    | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182                                                                                                               | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169                                                                                                         | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249                                                                                                           | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256                                              | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245                                                                                                                | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223                                                                                         | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218                                                                                                      | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208                                                         | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203                                                  | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207                                                                                   | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199                                                                                                       | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0                                                                                                       | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0                                                           | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208                                                         |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood                                                                                                                                                                                                                                                               | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252                                                                                                             | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186                                                                                             | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138                                                                                                       | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186                                                               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82                                                                                                        | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159                                                                                                   | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0                                                                                                    | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236                                                                                               | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235                                  | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223                                                                                                    | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0                                                                                    | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0                                                                                                 | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0                                                    | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173                                      | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0                                                                              | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0                                                                                                  | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0                                                                                                       | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222                                                    | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188                                             |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf                                                                                                                                                                                                                                               | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0                                                                                          | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0                                                                                        | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131                                                                                                | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23                                                         | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16                                                                                                  | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23                                                                                             | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23                                                                                       | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13                                                                                         | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21                            | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22                                                                                              | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30                                                                       | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25                                                                                    | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193                                             | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30                                | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191                                                                       | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22                                                                                     | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27                                                                                          | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222<br>28                                              | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage                                                                                                                                                                                                                          | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0                                                                                          | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0                                                                                        | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17                                                                                          | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23                                                         | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16                                                                                                  | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23                                                                                             | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23                                                                                       | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13                                                                                         | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21                            | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231                                                                                       | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30                                                                       | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25                                                                                    | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15                                       | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30                                | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16                                                                 | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22                                                                                     | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27                                                                                          | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222<br>28                                              | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD                                                                                                                                                                                                                     | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20                                                                             | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9                                                                            | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213                                                                                   | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218                                                  | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150                                                                                           | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212                                                                                      | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0                                                                           | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73                                                                                   | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21                            | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0                                                                                  | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0                                                           | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0                                                                        | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br><b>93</b>                          | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30<br><b>92</b>                   | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88                                                           | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0                                                                          | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0                                                                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br><b>96</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222<br>28<br><b>95</b>                                 | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20<br>94                                 |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon                                                                                                                                                                                                           | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20                                                                             | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9                                                                            | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0                                                                              | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0                                             | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br><b>150</b><br>0                                                                               | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0                                                                                 | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br><b>266</b><br>0                                                                    | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0                                                                              | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21<br>81<br>0                 | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140                                                                           | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0                                                           | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25                                                                  | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br><b>93</b><br>0                     | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30<br><b>92</b><br>0<br>2         | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0                                                      | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0                                                                          | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0                                                                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0                                                                     | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20<br>94<br>0                            |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated                                                                                                                                                                                                | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11                                                                       | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346                                                                | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0                                                                              | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0                                             | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0                                                                                      | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0                                                                            | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0                                                                           | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0                                                                         | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21<br>81<br>0<br>81           | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91                                                                     | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84                                              | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94                                                            | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br>93<br>0<br>0                       | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30<br>92<br>0<br>2                | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br><b>88</b><br>0<br>0<br>88                                    | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88                                                               | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87                                                                         | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222<br>28<br>95<br>0<br>0                              | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20<br>94<br>0                            |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use                                                                                                                                                                                     | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367                                                       | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346                                                                       | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213                                                                  | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0<br>0<br>218                                 | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br><b>150</b><br>0<br>0<br>150                                                                   | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212                                                                     | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266                                                               | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73                                                                   | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21<br>81<br>0<br>81           | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91                                                                     | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324                                     | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94                                                            | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br>93<br>0<br>93                      | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30<br><b>92</b><br>0<br>2<br>91   | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0<br>0<br>88                                           | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88                                                               | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87                                                                         | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346                                                            | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94                                                           |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export                                                                                                                                                                       | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639                                                | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712                                                       | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213<br>4,210<br>2,219                                                | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0<br>0<br>218<br>8,786<br>6,070               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0                                                                                      | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577                                                 | 0 3,208 2,947 0 477 342 117 169 0 146 23 266 0 0 566 15,724                                                                                                  | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617                                               | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21<br>81<br>0<br>0<br>81      | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91                                                                     | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461                            | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564                                                   | 045<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br>93<br>0<br>0<br>93<br>4,314        | 645<br>3,688<br>2,911<br>0<br>481<br>365<br>167<br>203<br>0<br>173<br>30<br>92<br>0<br>2<br>91<br>4,610 | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br><b>88</b><br>0<br>0<br>88<br><b>3,055</b>                    | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487                                               | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>2249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594                                                   | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 645<br>3,660<br>3,123<br>0<br>446<br>335<br>123<br>250<br>0<br>222<br>28<br><b>95</b><br>0<br>0<br>95<br><b>5,346</b> | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 4,934 1,996                                               |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake                                                                                                                                               | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639                                                | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0                                           | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213<br>4,210<br>2,219                                                | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0<br>0<br>218<br>8,786<br>6,070               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>9,071                                                                 | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577                                                 | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724                                                     | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255                                                         | 0<br>2,563<br>3,271<br>0<br>380<br>333<br>116<br>256<br>0<br>235<br>21<br>81<br>0<br>0<br>81      | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>23<br>140<br>91<br>11,010<br>7,827<br>0                                                   | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461                            | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564<br>143<br>0                                       | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>15<br>93<br>4,314<br>0                   | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 91 4,610                                                  | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0<br>0<br>88<br>3,055                                  | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487                                               | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87<br>4,947<br>594                                                         | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493                                                      | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>112<br>208<br>0<br>188<br>20<br>94<br>4,934<br>1,996               |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation                                                                                                                                   | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028                                  | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139                                  | 0 3,252 2,570 0 414 282 113 286 138 131 17 213 0 0 213 4,210 2,219 0 1,291                                                                                        | 0<br>2,578<br>2,626<br>0<br>396<br>325<br>116<br>245<br>36<br>186<br>23<br>218<br>0<br>0<br>218<br>8,786<br>6,070<br>0<br>2,016 | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>150<br>11,120<br>9,071<br>0                                                       | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104                                   | 0 3,208 2,947 0 477 342 117 169 0 146 23 266 0 0 266 15,724 12,661 0 2,363                                                                                   | 0 3,935 3,595 0 460 230 113 249 0 236 13 73 0 0 73 14,255 12,617 0 938                                                                                         | 0 2,563 3,271 0 380 333 116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634                          | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483                                    | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0                       | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 4,564 143 0 3,951                                                                                    | 645<br>3,674<br>3,979<br>0<br>423<br>327<br>134<br>208<br>0<br>193<br>0<br>0<br>93<br>4,314<br>0<br>0<br>3,764 | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762                                  | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0<br>0<br>88<br>3,055<br>150<br>0<br>2,205             | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198                                 | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87<br>4,947<br>594<br>0<br>3,653                                           | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153                                              | 645<br>3,280<br>2,844<br>0<br>417<br>284<br>1112<br>208<br>20<br>94<br>0<br>94<br>4,934<br>1,996<br>0<br>2,238 |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood 7ri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production                                                                                                                        | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028                                  | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139                                  | 0 3,2570 0 414 282 113 286 138 131 17 213 0 0 213 4,210 2,219 0 1,291 700                                                                                         | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 2,016                                                       | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br><b>150</b><br>0<br>0<br>150<br><b>11,120</b><br>9,071<br>0<br>1,349                           | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104                                   | 0 3,208 2,947 0 477 342 117 169 0 146 23 266 0 0 266 15,724 12,661 0 2,363 700                                                                               | 0 3,935 3,595 0 460 230 113 249 0 236 13 73 0 0 73 14,255 12,617 0 938 700                                                                                     | 0 2,563 3,271 0 380 333 1116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700                     | 0 4,558 3,567 0 532 369 109 245 0 223 2 231 0 140 91 11,010 7,827 0 2,483                                                                                           | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>3,163<br>700       | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564<br>143<br>0<br>3,951                              | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 93 4,314 0 3,764                                             | 645 3,688 2,911 0 481 3665 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686                             | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0<br>0<br>0<br>88<br>3,055<br>150<br>0<br>2,205<br>700 | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>1777<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198                                | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153                                              | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 4,934 1,996 0 2,238                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow                                                                                              | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028<br>700<br>0                      | 3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0                                  | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213<br>4,210<br>2,219<br>700<br>0                                    | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 218 8,786 6,070 0 2,016 700 0                                                   | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>9,071<br>0<br>1,349<br>700                                            | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104<br>700                            | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724<br>12,661<br>0<br>2,363<br>700                      | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700                            | 0 2,563 3,271 0 380 333 1116 256 0 235 21 81 0 0 81 110,082 0 2,634 700 362                       | 0 4,558 3,567 0 532 369 109 245 0 223 2 231 0 140 91 11,010 7,827 0 2,483 700 125                                                                                   | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>3,163<br>700       | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 143 0 3,951 470 0                                                                                    | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 550 0                                                  | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686 0                            | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0                                                             | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198<br>700                          | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230<br>700<br>1,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153 700                                          | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 1,996 0 2,238 700 0                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood 7ri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production                                                                                                                        | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028                                  | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139                                  | 0 3,2570 0 414 282 113 286 138 131 17 213 0 0 213 4,210 2,219 0 1,291 700                                                                                         | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 2,016                                                       | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br><b>150</b><br>0<br>0<br>150<br><b>11,120</b><br>9,071<br>0<br>1,349                           | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104                                   | 0 3,208 2,947 0 477 342 117 169 0 146 23 266 0 0 266 15,724 12,661 0 2,363 700                                                                               | 0 3,935 3,595 0 460 230 113 249 0 236 13 73 0 0 73 14,255 12,617 0 938 700                                                                                     | 0 2,563 3,271 0 380 333 1116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700                     | 0 4,558 3,567 0 532 369 109 245 0 223 2 231 0 140 91 11,010 7,827 0 2,483                                                                                           | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>3,163<br>700       | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 4,564 143 0 3,951 470 0                                                                              | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 93 4,314 0 3,764                                             | 645 3,688 2,911 0 481 3665 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686                             | 645<br>3,604<br>3,166<br>0<br>436<br>284<br>131<br>207<br>0<br>191<br>16<br>88<br>0<br>0<br>0<br>88<br>3,055<br>150<br>0<br>2,205<br>700 | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>1777<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198                                | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153                                              | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 4,934 1,996 0 2,238                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow                                                                                              | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028<br>700<br>0                      | 3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0                                  | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213<br>4,210<br>2,219<br>700<br>0                                    | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 218 8,786 6,070 0 2,016 700 0                                                   | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>9,071<br>0<br>1,349<br>700                                            | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104<br>700                            | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724<br>12,661<br>0<br>2,363<br>700                      | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700                            | 0 2,563 3,271 0 380 333 1116 256 0 235 21 81 0 0 81 110,082 0 2,634 700 362                       | 0 4,558 3,567 0 532 369 109 245 0 223 2 231 0 140 91 11,010 7,827 0 2,483 700 125                                                                                   | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>3,163<br>700       | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 143 0 3,951 470 0                                                                                    | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 550 0                                                  | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686 0                            | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0                                                             | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198<br>700                          | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700                               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230<br>700<br>1,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153 700                                          | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 1,996 0 2,238 700 0                                       |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood 7iri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF)                                                                           | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028<br>700<br>0                      | 3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0                                  | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>2,219<br>0<br>1,291<br>700<br>0                                      | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 218 8,786 6,070 0 2,016 700 0 592                                               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>1,720<br>9,071<br>0<br>1,349<br>700<br>200                            | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>700<br>766<br>1,873                          | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724<br>12,661<br>0<br>2,363<br>700<br>760<br>-1,390     | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700<br>750                     | 0 2,563 3,271 0 380 333 116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911           | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674            | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>0<br>1-11,666      | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564<br>143<br>0<br>3,951<br>470<br>0                  | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 550 0 8,309                                            | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686 0 -4,560                     | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0 13,193                                                      | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>0<br>8,790                            | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700<br>921<br>-3,639                   | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230<br>70<br>1,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153 700 194 -4,997                               | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 1,994 2,238 700 0 4,290                                   |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood 7iri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF)                                                                           | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028<br>700<br>0                      | 3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>712<br>0<br>2,139<br>700<br>0<br>-6,628                                 | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>2,219<br>0<br>1,291<br>700<br>0                                      | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 218 8,786 6,070 0 2,016 700 0 592                                               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>1,720<br>9,071<br>0<br>1,349<br>700<br>200                            | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>700<br>766<br>1,873                          | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724<br>12,661<br>0<br>2,363<br>700<br>760<br>-1,390     | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700<br>750                     | 0 2,563 3,271 0 380 333 116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911           | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674            | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>0<br>1-11,666      | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564<br>143<br>0<br>3,951<br>470<br>0                  | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 550 0 8,309                                            | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686 0 -4,560                     | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0 13,193                                                      | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>0<br>8,790                            | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700<br>921<br>-3,639                   | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230<br>70<br>1,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153 700 194 -4,997                               | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 1,994 2,238 700 0 4,290                                   |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                     | 0<br>4,164<br>3,966<br>0<br>408<br>346<br>100<br>252<br>101<br>151<br>0<br>382<br>20<br>11<br>351<br>3,367<br>639<br>0<br>2,028<br>700<br>0<br>-8,389<br>201,787 | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0<br>-6,628                   | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>7<br>213<br>0<br>0<br>2,219<br>0<br>1,291<br>700<br>0<br>14,974<br>210,133                  | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 0 592 210,725                                               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>0<br>150<br>11,120<br>9,071<br>0<br>1,349<br>700<br>200<br>13,031            | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104<br>700<br>766<br>1,873            | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>0<br>2,363<br>700<br>760<br>-1,390<br>224,239                     | 0<br>3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700<br>750<br>2,551<br>226,750 | 0 2,563 3 3,271 0 380 333 116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911 221,839 | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674<br>218,165 | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>3,163<br>700<br>0<br>-11,666   | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 4,564 143 0 3,951 470 0 62 206,561                                                                   | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 0 0 8,309 214,870                                      | 645 3,688 2,911 0 481 365 167 203 0 173 30 92 0 2 91 4,610 163 0 3,762 686 0 -4,560 210,310             | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0 13,193 223,503                                              | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>1777<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198<br>700<br>0<br>8,790           | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>2249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700<br>921<br>-3,639<br>228,654  | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1,205<br>1 | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 1,493 0 3,153 700 194 -4,997 220,646                             | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 4,934 1,996 0 4,290 224,936                                      |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                     | 0 4,164 3,966 0 408 346 100 252 101 151 0 382 20 111 351 3,367 639 201,787 1991                                                                                  | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>186<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0<br>-6,628<br>195,159 | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>17<br>213<br>0<br>0<br>213<br>4,210<br>2,219<br>700<br>0<br>14,974<br>210,133               | 0 2,578 2,626 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 592 210,725                                                 | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>11,120<br>9,071<br>0<br>1,349<br>700<br>200<br>13,031<br>223,756      | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>0<br>159<br>23<br>212<br>0<br>0<br>2,12<br>13,381<br>10,577<br>700<br>766<br>1,873<br>225,629         | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>2,363<br>700<br>2,363<br>700<br>2,24,239                          | 3,935<br>3,595<br>0<br>460<br>230<br>113<br>249<br>0<br>236<br>13<br>73<br>0<br>0<br>73<br>14,255<br>12,617<br>0<br>938<br>700<br>750<br>2,511<br>226,750      | 0 2,563 3,271 0 380 2335 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911 221,839                | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674<br>218,165 | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>-11,666<br>206,499 | 0 3,579 3,458 0 448 423 134 218 0 193 25 119 0 25 94 4,564 143 0 3,951 470 0 62 206,561                                                                   | 645 3,674 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 550 0 8,309 214,870                                    | 645 3,688 2,911 0 481 365 167 203 92 0 2 91 4,610 163 3,762 686 0 -4,560 210,310                        | 645 3,604 3,166 0 436 284 131 207 0 1991 6 88 0 0 88 3,055 150 0 2,205 700 0 13,193 223,503                                              | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>1777<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>0<br>8,790<br>232,293                | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>249<br>0<br>222<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>7,009<br>921<br>-3,639<br>228,654 | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>3,230<br>7,230<br>7,205<br>-3,011<br>225,643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 700 194 -4,997 220,646                               | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 4,934 1,996 0 2,238 700 0 4,290 224,936                   |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                     | 0 4,164 3,966 0 408 346 100 252 101 151 0 382 20 11 3,367 639 0 6 8,389 201,787                                                                                  | 0 3,368 3,744 3 410 336 113 222 36 186 0 355 9 0 346 3,551 712 0 2,139 700 0 -6,628 195,159                                                                   | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>77<br>213<br>0<br>0<br>213<br>4,210<br>2,219<br>0<br>1,291<br>700<br>0<br>14,974<br>210,133 | 0 2,578 2,626 0 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 592 210,725                                               | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>0<br>1,1120<br>9,071<br>0<br>1,349<br>700<br>200<br>13,031<br>223,756 | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>10,577<br>0<br>2,104<br>700<br>766<br>1,873<br>225,629           | 0<br>3,208<br>2,947<br>0<br>477<br>342<br>117<br>169<br>0<br>146<br>23<br>266<br>0<br>0<br>266<br>15,724<br>12,661<br>0<br>2,363<br>700<br>-1,390<br>224,239 | 0 3,935<br>3,595<br>0 460<br>230<br>113<br>249<br>0 6<br>13<br>73<br>0 0<br>73<br>14,255<br>12,617<br>0 938<br>700<br>2,511<br>226,750                         | 0 2,563 3,271 0 380 383 116 256 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911 221,839         | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674<br>218,165 | 0<br>3,112<br>3,707<br>0<br>472<br>318<br>109<br>223<br>0<br>193<br>30<br>227<br>0<br>143<br>84<br>9,324<br>5,461<br>0<br>-11,666<br>206,499 | 0<br>3,579<br>3,458<br>0<br>448<br>423<br>134<br>218<br>0<br>193<br>25<br>119<br>0<br>25<br>94<br>4,564<br>143<br>0<br>3,951<br>470<br>0<br>62<br>206,561 | 645 3,677 3,979 423 327 134 208 0 193 15 93 0 0 3,764 550 0 8,309 214,870                                      | 645 3,688 2,911 0 481 365 167 203 30 92 91 4,610 163 0 3,762 686 0 -4,560 210,310                       | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0 13,193 223,503                                              | 645<br>3,587<br>3,106<br>0<br>467<br>441<br>93<br>199<br>0<br>177<br>22<br>88<br>0<br>0<br>88<br>3,385<br>487<br>0<br>2,198<br>700<br>0<br>8,790<br>232,293 | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>229<br>227<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700<br>921<br>-3,639<br>228,654              | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>700<br>1,205<br>-3,011<br>225,643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 700 3,153 700 194 -4,997 220,646                     | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 0 94 4,934 1,996 0 2,238 700 0 4,290 224,936                   |
| Zone 7 for DSRSD City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production NET RECHARGE (AF) INVENTORY STORAGE (AF) STORAGE CALCULATION INVENTORY (Rounded to TAF) GW ELEVATIONS (Rounded to TAF) | 0 4,164 3,966 0 408 346 100 252 101 151 0 382 20 11 3,367 639 0 2,028 700 0 -8,389 201,787                                                                       | 0<br>3,368<br>3,744<br>3<br>410<br>336<br>113<br>222<br>36<br>0<br>355<br>9<br>0<br>346<br>3,551<br>712<br>0<br>2,139<br>700<br>0<br>-6,628<br>195,159        | 0<br>3,252<br>2,570<br>0<br>414<br>282<br>113<br>286<br>138<br>131<br>77<br>213<br>0<br>0<br>2,219<br>0<br>1,291<br>700<br>0<br>14,974<br>210,133                 | 0 2,578 2,626 0 0 396 325 116 245 36 186 23 218 0 0 218 8,786 6,070 0 2,016 700 0 592 210,725                                   | 0<br>1,262<br>2,053<br>0<br>370<br>285<br>116<br>139<br>41<br>82<br>16<br>150<br>0<br>0<br>150<br>9,071<br>0<br>1,349<br>700<br>200<br>13,031<br>223,756                | 0<br>1,333<br>1,551<br>0<br>411<br>343<br>117<br>182<br>0<br>159<br>23<br>212<br>0<br>0<br>212<br>13,381<br>10,577<br>0<br>2,104<br>700<br>766<br>1,873<br>225,629 | 0 3,208 2,947 0 477 342 117 169 0 146 23 266 0 0 266 15,724 12,661 700 760 -1,390 224,239                                                                    | 0 3,935 3,595 0 460 230 113 249 0 236 13 73 0 0 73 14,255 12,617 0 938 750 2,511 226,750                                                                       | 0 2,563 3,271 0 380 333 116 256 0 235 21 81 0 0 81 13,416 10,082 0 2,634 700 362 -4,911 221,839   | 0<br>4,558<br>3,567<br>0<br>532<br>369<br>109<br>245<br>0<br>223<br>22<br>231<br>0<br>140<br>91<br>11,010<br>7,827<br>0<br>2,483<br>700<br>125<br>-3,674<br>218,165 | 0 3,112 3,707 0 472 318 109 223 30 227 0 143 84 9,324 5,461 0 0 -11,666 206,499                                                              | 0 3,579 3,458 0 448 423 134 218 0 199 25 94 4,564 143 0 3,951 470 0 62 206,561                                                                            | 645 3,677 3,979 0 423 327 134 208 0 193 15 93 0 0 3,764 0 0 3,765 0 8,309 214,870                              | 645 3,688 2,911 0 481 365 167 203 92 0 173 30 92 91 4,610 163 0 3,762 686 0 -4,560 210,310              | 645 3,604 3,166 0 436 284 131 207 0 191 16 88 0 0 88 3,055 150 0 2,205 700 0 13,193 223,503                                              | 645 3,587 3,106 0 467 4411 93 199 0 1777 22 88 0 0 88 3,385 487 0 2,198 700 0 8,790 232,293                                                                 | 4,146<br>645<br>3,638<br>2,971<br>0<br>494<br>443<br>96<br>229<br>27<br>87<br>0<br>0<br>87<br>4,947<br>594<br>0<br>3,653<br>700<br>921<br>-3,639<br>228,654               | 6,210<br>645<br>2,387<br>3,143<br>0<br>492<br>289<br>109<br>241<br>0<br>213<br>28<br>96<br>0<br>0<br>96<br>4,452<br>523<br>0<br>1,205<br>-3,011<br>225,643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 645 3,660 3,123 0 446 335 123 250 0 222 28 95 0 0 95 5,346 1,493 0 3,153 700 194 -4,997 220,646                       | 645 3,280 2,844 0 417 284 112 208 0 188 20 94 0 94 4,934 1,996 0 2,238 700 0 4,290 224,936                     |

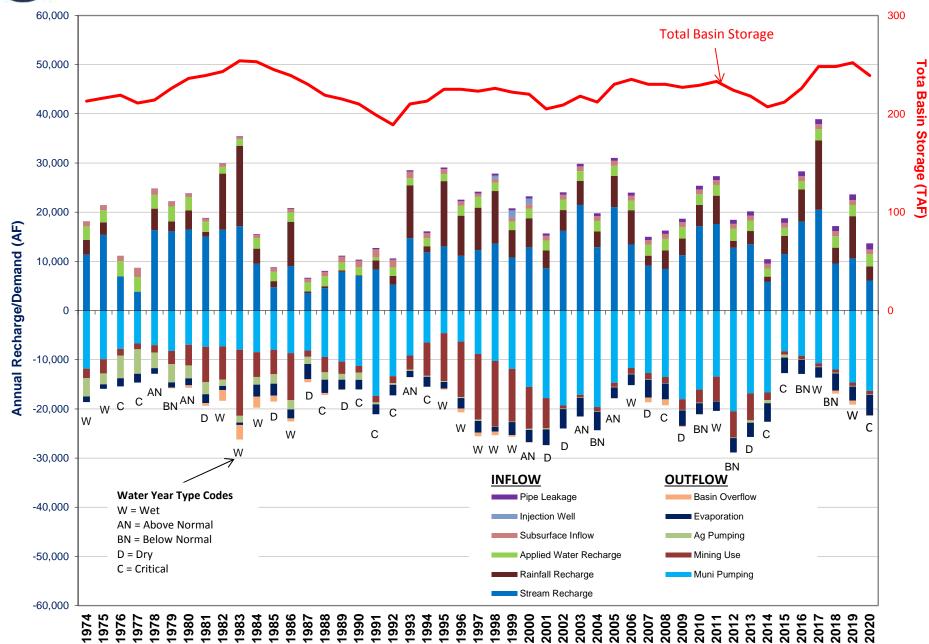
Artificial Components Natural Components

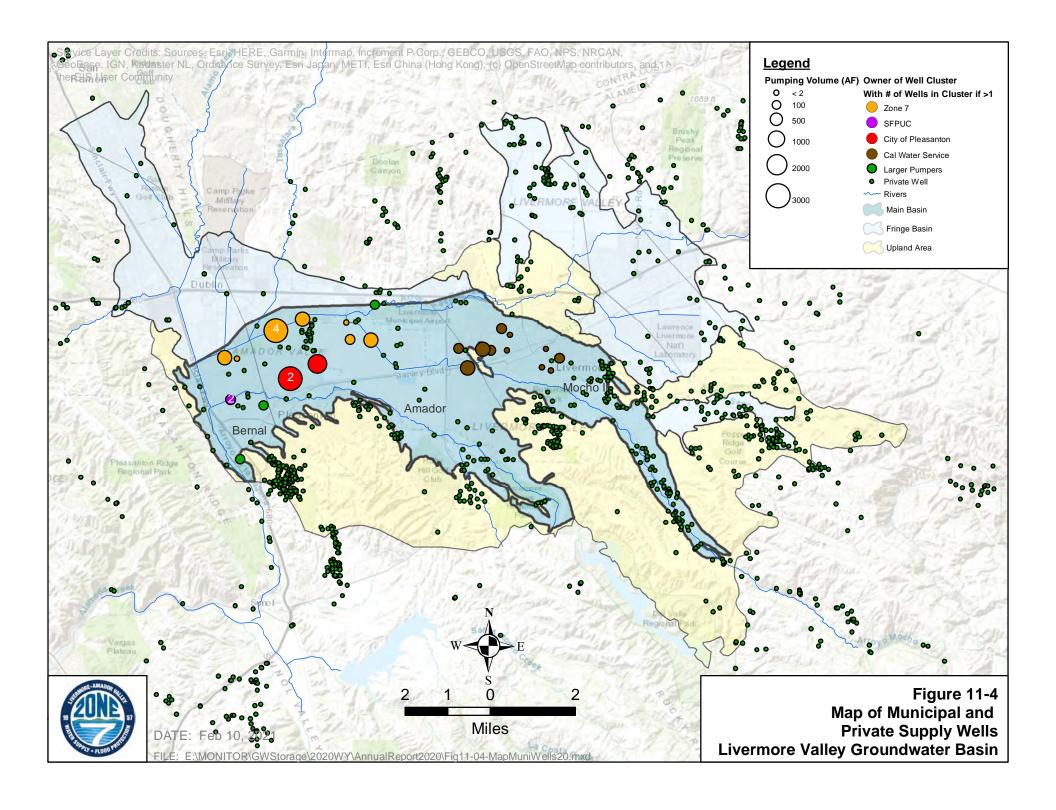




#### TABLE 11-3 HISTORICAL GROUNDWATER STORAGE HYDROLOGIC INVENTORY (HI) METHOD

1974-2020 WATER YEARS (in Acre-Feet, except where indicated)

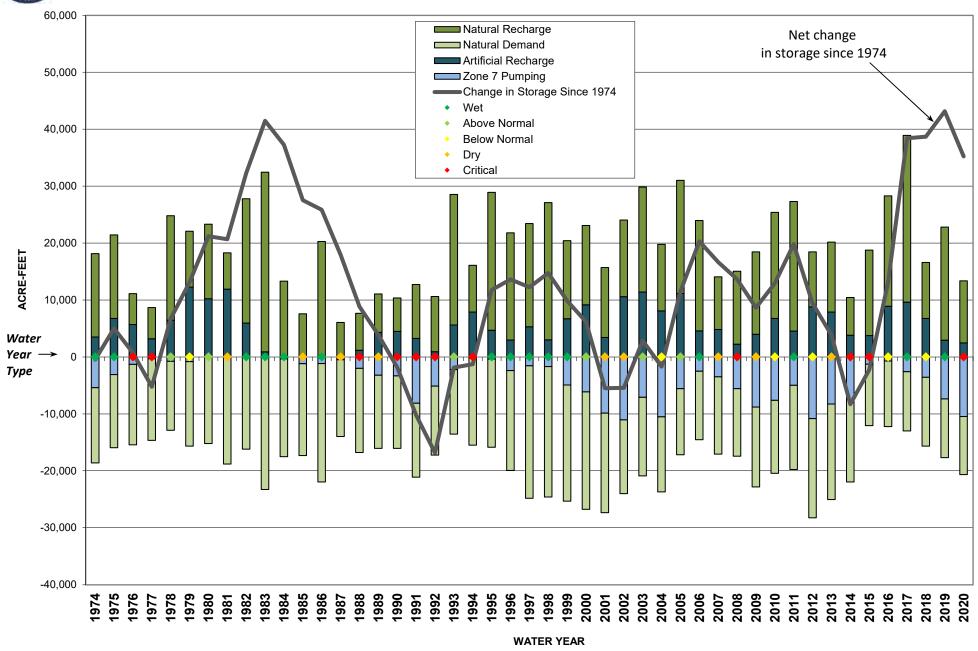
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                           |                                                                                                                                                            | WA.                                                                                                              | TER YEAR                                                                                                      | (Oct - Sep                                                                                                                            | )                                                                                               |                                                                                                                                           |                                                                                                                                             |                                                                                                                                                       |                                                                                                                                                         | 1974 - 202                                                                                                        | 0                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                              | 2011                                                                                                                                                    | 2012                                                                                      | 2013                                                                                                                                                       | 2014                                                                                                             | 2015                                                                                                          | 2016                                                                                                                                  | 2017                                                                                            | 2018                                                                                                                                      | 2019                                                                                                                                        | 2020                                                                                                                                                  | AVG                                                                                                                                                     | Sust Avg                                                                                                          | TOTAL                                                                                                                                                                                                  |
| INDICES                                                                                                                                                                                                                                                                                                                                                                                                 | 2011                                                                                                                                                    | 2012                                                                                      | 2013                                                                                                                                                       | 2014                                                                                                             | 2013                                                                                                          | 2010                                                                                                                                  | 2017                                                                                            | 2010                                                                                                                                      | 2013                                                                                                                                        | 2020                                                                                                                                                  | 710                                                                                                                                                     | Just Avg                                                                                                          | TOTAL                                                                                                                                                                                                  |
| Rainfall at Livermore (in)                                                                                                                                                                                                                                                                                                                                                                              | 16.2                                                                                                                                                    | 8.8                                                                                       | 10.7                                                                                                                                                       | 6.8                                                                                                              | 13.1                                                                                                          | 15.4                                                                                                                                  | 25.6                                                                                            | 12.4                                                                                                                                      | 17.1                                                                                                                                        | 10.5                                                                                                                                                  | 14                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                        |
| 8 Station Rain Index (N. CA)(in)                                                                                                                                                                                                                                                                                                                                                                        | 72.8                                                                                                                                                    | 41.5                                                                                      | 46.3                                                                                                                                                       | 31.3                                                                                                             | 37.2                                                                                                          | 57.8                                                                                                                                  | 94.6                                                                                            | 40.9                                                                                                                                      | 70.7                                                                                                                                        | 31.7                                                                                                                                                  | 53                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                        |
| Evap at Lake Del Valle (in)                                                                                                                                                                                                                                                                                                                                                                             | 64.5                                                                                                                                                    | 73.2                                                                                      | 73.9                                                                                                                                                       | 78.3                                                                                                             | 73.6                                                                                                          | 72.6                                                                                                                                  | 69.3                                                                                            | 73.4                                                                                                                                      | 72.8                                                                                                                                        | 76.4                                                                                                                                                  | 67                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                        |
| Arroyo Valle Stream flow (AF)                                                                                                                                                                                                                                                                                                                                                                           | 28634                                                                                                                                                   | 1557                                                                                      | 7801                                                                                                                                                       | 272                                                                                                              | 2217                                                                                                          | 19436                                                                                                                                 | 89173                                                                                           | 2783                                                                                                                                      | 36944                                                                                                                                       | 2397                                                                                                                                                  | 24892                                                                                                                                                   |                                                                                                                   | 1169933                                                                                                                                                                                                |
| Water Year Type*                                                                                                                                                                                                                                                                                                                                                                                        | W                                                                                                                                                       | BN                                                                                        | D                                                                                                                                                          | С                                                                                                                | С                                                                                                             | BN                                                                                                                                    | W                                                                                               | BN                                                                                                                                        | W                                                                                                                                           | С                                                                                                                                                     |                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                        |
| SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                  | 27,315                                                                                                                                                  | 18,442                                                                                    | 20,158                                                                                                                                                     | 10,452                                                                                                           | 18,753                                                                                                        | 28,293                                                                                                                                | 38,895                                                                                          | 17,164                                                                                                                                    | 23,625                                                                                                                                      | 13,515                                                                                                                                                | 20,165                                                                                                                                                  | 19,800                                                                                                            | 947,750                                                                                                                                                                                                |
| Injection Well Recharge                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                       | 0                                                                                         | 0                                                                                                                                                          | 0                                                                                                                | 0                                                                                                             | 0                                                                                                                                     | 0                                                                                               | 0                                                                                                                                         | 0                                                                                                                                           | 0                                                                                                                                                     | 71                                                                                                                                                      | 0                                                                                                                 | 3,322                                                                                                                                                                                                  |
| Stream Recharge                                                                                                                                                                                                                                                                                                                                                                                         | 17,595                                                                                                                                                  | 12,734                                                                                    | 13,457                                                                                                                                                     | 5,820                                                                                                            | 11,469                                                                                                        | 18,083                                                                                                                                | 20,495                                                                                          | 9,560                                                                                                                                     | 10,605                                                                                                                                      | 5,972                                                                                                                                                 | 11,927                                                                                                                                                  | 11,900                                                                                                            | 560,552                                                                                                                                                                                                |
| Artificial Stream Recharge                                                                                                                                                                                                                                                                                                                                                                              | 4,555                                                                                                                                                   | 8,778                                                                                     | 7,887                                                                                                                                                      | 3,826                                                                                                            | 3,766                                                                                                         | 8,910                                                                                                                                 | 9,615                                                                                           | 6,773                                                                                                                                     | 2,943                                                                                                                                       | 2,461                                                                                                                                                 | 5,309                                                                                                                                                   | 5,300                                                                                                             | 249,528                                                                                                                                                                                                |
| Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                            | 768                                                                                                                                                     | 3,613                                                                                     | 1,916                                                                                                                                                      | 924                                                                                                              | 3,718                                                                                                         | 3,983                                                                                                                                 | 3,271                                                                                           | 3,778                                                                                                                                     | 2,168                                                                                                                                       | 2,045                                                                                                                                                 | 1,799                                                                                                                                                   | 1,640                                                                                                             | 84,555                                                                                                                                                                                                 |
| Arroyo Mocho                                                                                                                                                                                                                                                                                                                                                                                            | 3,671                                                                                                                                                   | 5,059<br>106                                                                              | 5,961                                                                                                                                                      | 2,844<br>58                                                                                                      | 0<br>48                                                                                                       | 4,927                                                                                                                                 | 6,344                                                                                           | 2,995<br>0                                                                                                                                | 775<br>0                                                                                                                                    | 416<br>0                                                                                                                                              | 3,400                                                                                                                                                   | 3,530<br>130                                                                                                      | 159,802                                                                                                                                                                                                |
| Arroyo las Positas Natural Stream Recharge                                                                                                                                                                                                                                                                                                                                                              | 116<br>11,272                                                                                                                                           | 3,355                                                                                     | 4,200                                                                                                                                                      | 1,987                                                                                                            | 6.822                                                                                                         | 0<br>8.289                                                                                                                            | 10.433                                                                                          | 1,938                                                                                                                                     | 6,439                                                                                                                                       | 2,595                                                                                                                                                 | 110<br>5.715                                                                                                                                            | 5.700                                                                                                             | 5,172<br>268,614                                                                                                                                                                                       |
| Arroyo Valle                                                                                                                                                                                                                                                                                                                                                                                            | 8,540                                                                                                                                                   | 1,676                                                                                     | 2,790                                                                                                                                                      | 891                                                                                                              | 4,567                                                                                                         | 4,749                                                                                                                                 | 6,053                                                                                           | 740                                                                                                                                       | 3,419                                                                                                                                       | 793                                                                                                                                                   | 2,539                                                                                                                                                   | 1,800                                                                                                             | 119,315                                                                                                                                                                                                |
| Arroyo Mocho                                                                                                                                                                                                                                                                                                                                                                                            | 2,293                                                                                                                                                   | 1,225                                                                                     | 838                                                                                                                                                        | 587                                                                                                              | 1,748                                                                                                         | 2,794                                                                                                                                 | 3,775                                                                                           | 590                                                                                                                                       | 2,393                                                                                                                                       | 1,072                                                                                                                                                 | 2,290                                                                                                                                                   | 2,600                                                                                                             | 107,624                                                                                                                                                                                                |
| Arroyo las Positas                                                                                                                                                                                                                                                                                                                                                                                      | 439                                                                                                                                                     | 454                                                                                       | 572                                                                                                                                                        | 509                                                                                                              | 507                                                                                                           | 746                                                                                                                                   | 605                                                                                             | 608                                                                                                                                       | 627                                                                                                                                         | 730                                                                                                                                                   | 887                                                                                                                                                     | 1,300                                                                                                             | 41,675                                                                                                                                                                                                 |
| Arroyo Valle Prior Rights                                                                                                                                                                                                                                                                                                                                                                               | 1,768                                                                                                                                                   | 601                                                                                       | 1,370                                                                                                                                                      | 7                                                                                                                | 881                                                                                                           | 884                                                                                                                                   | 447                                                                                             | 849                                                                                                                                       | 1.223                                                                                                                                       | 916                                                                                                                                                   | 902                                                                                                                                                     | 900                                                                                                               | 42,409                                                                                                                                                                                                 |
| Rainfall Recharge                                                                                                                                                                                                                                                                                                                                                                                       | 5,771                                                                                                                                                   | 1,462                                                                                     | 2,708                                                                                                                                                      | 1,075                                                                                                            | 3,735                                                                                                         | 6,554                                                                                                                                 | 14,087                                                                                          | 3,220                                                                                                                                     | 8,588                                                                                                                                       | 2,869                                                                                                                                                 | 4,675                                                                                                                                                   | 4,300                                                                                                             | 219,730                                                                                                                                                                                                |
| Lake Recharge                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                       | 0                                                                                         | 0                                                                                                                                                          | 2,428                                                                                                            | 4,322                                                                                                         | 6,785                                                                                                                                 | 13,029                                                                                          | 15,003                                                                                                                                    | 13,248                                                                                                                                      | 7,529                                                                                                                                                 | 1,326                                                                                                                                                   | NA                                                                                                                | 62,343                                                                                                                                                                                                 |
| Pipe Leakage                                                                                                                                                                                                                                                                                                                                                                                            | 776                                                                                                                                                     | 811                                                                                       | 847                                                                                                                                                        | 884                                                                                                              | 921                                                                                                           | 958                                                                                                                                   | 996                                                                                             | 1,034                                                                                                                                     | 1,146                                                                                                                                       | 1,209                                                                                                                                                 | 445                                                                                                                                                     | 1,000                                                                                                             | 20,922                                                                                                                                                                                                 |
| Applied Water Recharge                                                                                                                                                                                                                                                                                                                                                                                  | 2,172                                                                                                                                                   | 2,435                                                                                     | 2,147                                                                                                                                                      | 1,674                                                                                                            | 1,629                                                                                                         | 1,697                                                                                                                                 | 2,316                                                                                           | 2,350                                                                                                                                     | 2,286                                                                                                                                       | 2,465                                                                                                                                                 | 2,061                                                                                                                                                   | 1,600                                                                                                             | 96,889                                                                                                                                                                                                 |
| Urban - Municipal                                                                                                                                                                                                                                                                                                                                                                                       | 1,849                                                                                                                                                   | 2,061                                                                                     | 1,750                                                                                                                                                      | 1,229                                                                                                            | 1,143                                                                                                         | 1,312                                                                                                                                 | 1,957                                                                                           | 2,020                                                                                                                                     | 1,956                                                                                                                                       | 2,109                                                                                                                                                 | 1,436                                                                                                                                                   | 1,280                                                                                                             | 67,505                                                                                                                                                                                                 |
| Urban - Recycled Water                                                                                                                                                                                                                                                                                                                                                                                  | 133                                                                                                                                                     | 159                                                                                       | 189                                                                                                                                                        | 220                                                                                                              | 275                                                                                                           | 160                                                                                                                                   | 147                                                                                             | 106                                                                                                                                       | 119                                                                                                                                         | 129                                                                                                                                                   | 48                                                                                                                                                      | 26                                                                                                                | 2,242                                                                                                                                                                                                  |
| Agricultural - Municipal (SBA)                                                                                                                                                                                                                                                                                                                                                                          | 61                                                                                                                                                      | 68<br>13                                                                                  | 64<br>7                                                                                                                                                    | 66<br>20                                                                                                         | 61<br>18                                                                                                      | 88<br>15                                                                                                                              | 77                                                                                              | 80<br>14                                                                                                                                  | 80<br>14                                                                                                                                    | 80<br>14                                                                                                                                              | 137<br>117                                                                                                                                              | 92<br>12                                                                                                          | 6,461<br>5,504                                                                                                                                                                                         |
| Agricultural - Groundwater<br>Golf Courses - Groundwater                                                                                                                                                                                                                                                                                                                                                | 11<br>59                                                                                                                                                | 65                                                                                        | 62                                                                                                                                                         | 66                                                                                                               | 67                                                                                                            | 65                                                                                                                                    | 14<br>61                                                                                        | 63                                                                                                                                        | 61                                                                                                                                          | 66                                                                                                                                                    | 29                                                                                                                                                      | 146                                                                                                               | 1,384                                                                                                                                                                                                  |
| Golf Courses - Recycled Water                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | 70                                                                                        | 75                                                                                                                                                         | 73                                                                                                               | 65                                                                                                            | 59                                                                                                                                    | 60                                                                                              | 66                                                                                                                                        | 57                                                                                                                                          | 67                                                                                                                                                    | 60                                                                                                                                                      | 44                                                                                                                | 2,819                                                                                                                                                                                                  |
| Others                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                       | 0                                                                                         | 0                                                                                                                                                          | 0                                                                                                                | 0                                                                                                             | 0                                                                                                                                     | 0                                                                                               | 0                                                                                                                                         | 0                                                                                                                                           | 0                                                                                                                                                     | 233                                                                                                                                                     | 0                                                                                                                 | 10,973                                                                                                                                                                                                 |
| Subsurface Basin Inflow                                                                                                                                                                                                                                                                                                                                                                                 | 1,000                                                                                                                                                   | 1,000                                                                                     | 1,000                                                                                                                                                      | 1,000                                                                                                            | 1,000                                                                                                         | 1,000                                                                                                                                 | 1,000                                                                                           | 1,000                                                                                                                                     | 1,000                                                                                                                                       | 1,000                                                                                                                                                 | 986                                                                                                                                                     | 1,000                                                                                                             | 46,336                                                                                                                                                                                                 |
| DEMAND                                                                                                                                                                                                                                                                                                                                                                                                  | 20,421                                                                                                                                                  | 28,880                                                                                    | 25,700                                                                                                                                                     | 22,604                                                                                                           | 12,717                                                                                                        | 12,888                                                                                                                                | 13,636                                                                                          | 16,879                                                                                                                                    | 19,142                                                                                                                                      | 21,447                                                                                                                                                | 19,415                                                                                                                                                  | 18,800                                                                                                            | 912,518                                                                                                                                                                                                |
| Municipal Pumpage                                                                                                                                                                                                                                                                                                                                                                                       | 13,430                                                                                                                                                  | 20,463                                                                                    | 16,823                                                                                                                                                     | 16,662                                                                                                           | 8,284                                                                                                         | 9,176                                                                                                                                 | 10,714                                                                                          | 11,966                                                                                                                                    | 14,635                                                                                                                                      | 16,349                                                                                                                                                | 11,661                                                                                                                                                  | 13,700                                                                                                            | 548,071                                                                                                                                                                                                |
| Zone 7 (excluding DSRSD)                                                                                                                                                                                                                                                                                                                                                                                | 5,618                                                                                                                                                   | 11,461                                                                                    | 8,909                                                                                                                                                      | 8,137                                                                                                            | 1,920                                                                                                         | 1,357                                                                                                                                 | 3,243                                                                                           | 4,215                                                                                                                                     | 8,021                                                                                                                                       | 11,101                                                                                                                                                | 4,202                                                                                                                                                   | 5,300                                                                                                             | 197,479                                                                                                                                                                                                |
| Zone 7 for DSRSD                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                         |                                                                                           |                                                                                                                                                            |                                                                                                                  | 645                                                                                                           |                                                                                                                                       |                                                                                                 |                                                                                                                                           | 645                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 646                                                                                                                                                     | 644                                                                                       | 646                                                                                                                                                        | 645                                                                                                              |                                                                                                               | 645                                                                                                                                   | 645                                                                                             | 645                                                                                                                                       |                                                                                                                                             | 645                                                                                                                                                   | 247                                                                                                                                                     | 645                                                                                                               | 11,611                                                                                                                                                                                                 |
| City of Pleasanton                                                                                                                                                                                                                                                                                                                                                                                      | 3,435                                                                                                                                                   | 3,900                                                                                     | 3,301                                                                                                                                                      | 3,740                                                                                                            | 2,775                                                                                                         | 3,752                                                                                                                                 | 4,222                                                                                           | 3,913                                                                                                                                     | 3,785                                                                                                                                       | 2,701                                                                                                                                                 | 3,264                                                                                                                                                   | 3,500                                                                                                             | 11,611<br>153,386                                                                                                                                                                                      |
| City of Pleasanton<br>Cal. Water Service                                                                                                                                                                                                                                                                                                                                                                | 3,435<br>2,673                                                                                                                                          | 3,900<br>3,333                                                                            | 3,301<br>2,770                                                                                                                                             | 3,740<br>3,085                                                                                                   | 2,775<br>2,012                                                                                                | 3,752<br>2,575                                                                                                                        | 4,222<br>1,878                                                                                  | 3,913<br>2,389                                                                                                                            | 3,785<br>1,296                                                                                                                              | 2,701<br>904                                                                                                                                          | 3,264<br>2,761                                                                                                                                          | 3,500<br>3,070                                                                                                    | 11,611<br>153,386<br>129,780                                                                                                                                                                           |
| City of Pleasanton<br>Cal. Water Service<br>Camp Parks                                                                                                                                                                                                                                                                                                                                                  | 3,435<br>2,673<br>0                                                                                                                                     | 3,900<br>3,333<br>0                                                                       | 3,301<br>2,770<br>0                                                                                                                                        | 3,740<br>3,085<br>0                                                                                              | 2,775<br>2,012<br>0                                                                                           | 3,752<br>2,575<br>0                                                                                                                   | 4,222<br>1,878<br>0                                                                             | 3,913<br>2,389<br>0                                                                                                                       | 3,785<br>1,296<br>0                                                                                                                         | 2,701<br>904<br>0                                                                                                                                     | 3,264<br>2,761<br>188                                                                                                                                   | 3,500<br>3,070<br>0                                                                                               | 11,611<br>153,386<br>129,780<br>8,819                                                                                                                                                                  |
| City of Pleasanton<br>Cal. Water Service<br>Camp Parks<br>SFWD                                                                                                                                                                                                                                                                                                                                          | 3,435<br>2,673<br>0<br>442                                                                                                                              | 3,900<br>3,333<br>0<br>482                                                                | 3,301<br>2,770<br>0<br>482                                                                                                                                 | 3,740<br>3,085<br>0<br>398                                                                                       | 2,775<br>2,012<br>0<br>309                                                                                    | 3,752<br>2,575<br>0<br>286                                                                                                            | 4,222<br>1,878<br>0<br>214                                                                      | 3,913<br>2,389<br>0<br>253                                                                                                                | 3,785<br>1,296<br>0<br>286                                                                                                                  | 2,701<br>904<br>0<br>322                                                                                                                              | 3,264<br>2,761<br>188<br>403                                                                                                                            | 3,500<br>3,070<br>0<br>450                                                                                        | 11,611<br>153,386<br>129,780<br>8,819<br>18,956                                                                                                                                                        |
| City of Pleasanton<br>Cal. Water Service<br>Camp Parks<br>SFWD<br>Fairgrounds                                                                                                                                                                                                                                                                                                                           | 3,435<br>2,673<br>0<br>442<br>301                                                                                                                       | 3,900<br>3,333<br>0<br>482<br>318                                                         | 3,301<br>2,770<br>0<br>482<br>350                                                                                                                          | 3,740<br>3,085<br>0<br>398<br>286                                                                                | 2,775<br>2,012<br>0<br>309<br>268                                                                             | 3,752<br>2,575<br>0<br>286<br>231                                                                                                     | 4,222<br>1,878<br>0<br>214<br>208                                                               | 3,913<br>2,389<br>0<br>253<br>196                                                                                                         | 3,785<br>1,296<br>0<br>286<br>270                                                                                                           | 2,701<br>904<br>0<br>322<br>321                                                                                                                       | 3,264<br>2,761<br>188<br>403<br>288                                                                                                                     | 3,500<br>3,070<br>0<br>450<br>310                                                                                 | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527                                                                                                                                              |
| City of Pleasanton<br>Cal. Water Service<br>Camp Parks<br>SFWD                                                                                                                                                                                                                                                                                                                                          | 3,435<br>2,673<br>0<br>442                                                                                                                              | 3,900<br>3,333<br>0<br>482                                                                | 3,301<br>2,770<br>0<br>482                                                                                                                                 | 3,740<br>3,085<br>0<br>398                                                                                       | 2,775<br>2,012<br>0<br>309                                                                                    | 3,752<br>2,575<br>0<br>286                                                                                                            | 4,222<br>1,878<br>0<br>214                                                                      | 3,913<br>2,389<br>0<br>253                                                                                                                | 3,785<br>1,296<br>0<br>286                                                                                                                  | 2,701<br>904<br>0<br>322                                                                                                                              | 3,264<br>2,761<br>188<br>403                                                                                                                            | 3,500<br>3,070<br>0<br>450                                                                                        | 11,611<br>153,386<br>129,780<br>8,819<br>18,956                                                                                                                                                        |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic                                                                                                                                                                                                                                                                                                                              | 3,435<br>2,673<br>0<br>442<br>301<br>107                                                                                                                | 3,900<br>3,333<br>0<br>482<br>318<br>90                                                   | 3,301<br>2,770<br>0<br>482<br>350<br>105                                                                                                                   | 3,740<br>3,085<br>0<br>398<br>286<br>115                                                                         | 2,775<br>2,012<br>0<br>309<br>268<br>112                                                                      | 3,752<br>2,575<br>0<br>286<br>231<br>110                                                                                              | 4,222<br>1,878<br>0<br>214<br>208<br>107                                                        | 3,913<br>2,389<br>0<br>253<br>196<br>115                                                                                                  | 3,785<br>1,296<br>0<br>286<br>270<br>116                                                                                                    | 2,701<br>904<br>0<br>322<br>321<br>108                                                                                                                | 3,264<br>2,761<br>188<br>403<br>288<br>109                                                                                                              | 3,500<br>3,070<br>0<br>450<br>310<br>200                                                                          | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123                                                                                                                                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses                                                                                                                                                                                                                                                                                                                 | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187                                                                                             | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214                                | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233                                                                                                | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227                                                      | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213                                                   | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195                                                                           | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0                                            | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218                                                                               | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0                                                                                        | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225                                                                                             | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8                                                                                                  | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205                                                       | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351                                                                                                            |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf                                                                                                                                                                                                                                                                            | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21                                                                                       | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22                          | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27                                                                                          | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30                                                | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30                                             | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25                                                                     | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22                               | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22                                                                         | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22                                                                           | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22                                                                                       | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178                                                                                           | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20                                                 | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642                                                                                                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood 7ri-Valley Colf Agricultural Pumpage                                                                                                                                                                                                                                                       | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21                                                                                       | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22                          | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27                                                                                          | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30                                                | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30<br>590                                      | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25                                                                     | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22                               | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22                                                                         | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22                                                                           | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112                                                                                | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14                                                                                     | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400                                          | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818                                                                                           |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD                                                                                                                                                                                                                                                  | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br><b>85</b>                                                                          | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22<br>95                    | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0                                                                              | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30<br><b>640</b><br>0                             | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30<br><b>590</b><br>0                          | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0                                                         | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22<br>109<br>0                   | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0                                                             | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22<br>113<br>0                                                               | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0                                                                           | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br><b>996</b><br>128                                                                | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0                                     | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br><b>46,818</b><br>6,015                                                                           |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 35/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon                                                                                                                                                                                                                                        | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0                                                                            | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22<br>95<br>0               | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0                                                                              | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30<br><b>640</b><br>0                             | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30<br><b>590</b><br>0                          | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0                                                         | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22<br>109<br>0                   | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0                                                             | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22<br>113<br>0                                                               | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br><b>112</b><br>0                                                                    | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22                                                                 | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0                                     | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047                                                                         |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated                                                                                                                                                                                                                             | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85                                                                 | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22<br>95<br>0<br>0          | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0                                                                         | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30<br><b>640</b><br>0<br>640                      | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30<br><b>590</b><br>0<br>0<br>590              | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0<br>0                                                    | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22<br>109<br>0<br>0              | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0<br>0                                                        | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22<br>113<br>0<br>0                                                          | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0                                                                      | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846                                                          | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0<br>400                              | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>39,756                                                                      |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 35/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon                                                                                                                                                                                                                                        | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0                                                                            | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22<br>95<br>0               | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0                                                                              | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30<br><b>640</b><br>0                             | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>0<br>213<br>30<br><b>590</b><br>0                          | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0                                                         | 4,222<br>1,878<br>0<br>214<br>208<br>107<br>198<br>0<br>176<br>22<br>109<br>0                   | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0                                                             | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22<br>113<br>0                                                               | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br><b>112</b><br>0                                                                    | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22                                                                 | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0                                     | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047                                                                         |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use                                                                                                                                                                                                                  | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906                                                        | 3,900<br>3,333<br>0<br>482<br>318<br>90<br>236<br>0<br>214<br>22<br>95<br>0<br>0<br>95    | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796                                                | 3,740<br>3,085<br>0<br>398<br>286<br>115<br>257<br>0<br>227<br>30<br><b>640</b><br>0<br>0<br>640<br><b>5,302</b> | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 590 3,843                                                        | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0<br>0<br>115<br>3,597                                    | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813                                        | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113                                                 | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 113                                                                                          | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112                                                               | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369                                                 | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0<br>400                              | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>39,756<br>299,337                                                    |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation                                                                                                                                                                | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br><b>85</b><br>0<br>0<br>85<br><b>6,906</b><br>4,277<br>0                            | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946                       | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br><b>8,391</b><br>4,796<br>0<br>2,895                           | 3,740 3,085 0 398 286 115 257 0 227 30 640 0 640 5,302 850 3,752                                                 | 2,775<br>2,012<br>0<br>309<br>268<br>112<br>243<br>30<br>590<br>0<br>0<br>590<br>3,843<br>0<br>4,890<br>3,143 | 3,752<br>2,575<br>0<br>286<br>231<br>1110<br>220<br>0<br>195<br>25<br>115<br>0<br>0<br>115<br>3,597<br>0<br>7,700<br>2,897            | 4,222 1,878 0 214 208 107 198 0 76 622 109 0 0 109 2,813 0 13,452 2,113                         | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536                | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>0<br>194<br>22<br>113<br>0<br>0<br>113<br>3,585<br>0<br>13,864<br>2,885                         | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140                          | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br><b>6,369</b><br>3,345<br>4,464<br>2,332               | 3,500<br>3,070<br>0<br>450<br>310<br>200<br>225<br>0<br>205<br>20<br>400<br>0<br>0<br>4,600<br>700<br>NA<br>3,200 | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>642<br>46,818<br>6,015<br>1,047<br>39,756<br>299,337<br>157,219<br>68,793                                        |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood 7tri-Valley Colf  Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production                                                                                                                                                   | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>1,929<br>700                          | 3,900 3,333 0 482 318 90 236 0 224 22 95 0 95 8,322 4,676 0 2,946 700                     | 3,301<br>2,770<br>0<br>482<br>350<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895                                         | 3,740 3,085 0 398 286 115 257 0 227 30 640 0 640 5,302 850 5,420 3,752 700                                       | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 0 4,890 3,143 700                                                | 3,752<br>2,575<br>0<br>286<br>231<br>1110<br>220<br>0<br>195<br>25<br>115<br>0<br>0<br>115<br>3,597<br>0<br>7,700<br>2,897            | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813 0 13,452 2,113 700                     | 3,913<br>2,389<br>0<br>253<br>196<br>1115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>700        | 3,785 1,296 0 286 270 116 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700                                                                     | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700                        | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>122<br>846<br>6,369<br>3,345<br>1,464<br>2,332<br>692                     | 3,500 3,070 0 450 310 200 225 0 205 400 0 4,600 700 NA 3,200 700                                                  | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>39,756<br>299,337<br>157,219<br>68,793<br>109,612<br>32,506          |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood Tri-Valley Colf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow                                                                                                                           | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>1,929<br>700                          | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946 700 0                 | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>280<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700                           | 3,740 3,085 0 398 286 2115 257 0 640 0 0 640 5,302 850 3,752 700 0                                               | 2,775 2,012 0 0 309 268 1112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 0                                   | 3,752 2,575 0 286 231 1110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897                                                               | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 1,3452 2,113 700 0                               | 3,913<br>2,389<br>0<br>253<br>196<br>1115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>750<br>564 | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 809                                                             | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700                        | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>174<br>996<br>128<br>446<br>6,369<br>3,345<br>1,464<br>2,332<br>692<br>389                    | 3,500 3,070 0 450 310 200 225 0 205 20 400 0 4,600 700 NA 3,200 700                                               | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow  NET RECHARGE (AF)                                                                                                        | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>1,929<br>700                          | 3,900 3,333 0 482 318 90 236 0 224 22 95 0 95 8,322 4,676 0 2,946 700                     | 3,301<br>2,770<br>0<br>482<br>350<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895                                         | 3,740 3,085 0 398 286 115 257 0 227 30 640 0 640 5,302 850 5,420 3,752 700                                       | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 0 4,890 3,143 700                                                | 3,752<br>2,575<br>0<br>286<br>231<br>1110<br>220<br>0<br>195<br>25<br>115<br>0<br>0<br>115<br>3,597<br>0<br>7,700<br>2,897            | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813 0 13,452 2,113 700                     | 3,913<br>2,389<br>0<br>253<br>196<br>1115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>700        | 3,785 1,296 0 286 270 116 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700                                                                     | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700                        | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>122<br>846<br>6,369<br>3,345<br>1,464<br>2,332<br>692                     | 3,500 3,070 0 450 310 200 225 0 205 400 0 4,600 700 NA 3,200 700                                                  | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>39,756<br>299,337<br>157,219<br>68,793<br>109,612<br>32,506          |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood Tri-Valley Colf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow                                                                                                                           | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>1,929<br>700                          | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946 700 0                 | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>280<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700                           | 3,740 3,085 0 398 286 2115 257 0 640 0 0 640 5,302 850 3,752 700 0                                               | 2,775 2,012 0 0 309 268 1112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 0                                   | 3,752 2,575 0 286 231 1110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897                                                               | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 1,3452 2,113 700 0                               | 3,913<br>2,389<br>0<br>253<br>196<br>1115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>700<br>564 | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 809                                                             | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700                        | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>174<br>996<br>128<br>446<br>6,369<br>3,345<br>1,464<br>2,332<br>692<br>389                    | 3,500 3,070 0 450 310 200 225 0 205 20 400 0 4,600 700 NA 3,200 700                                               | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow  NET RECHARGE (AF)                                                                                                        | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>0<br>1,929<br>700<br>0<br>6,893       | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946 700 0 -10,438         | 3,301<br>2,770<br>0<br>482<br>350<br>0<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0                 | 3,740 3,085 0 398 286 286 115 257 0 640 0 0 640 5,302 850 3,752 700 0 -12,153                                    | 2,775 2,012 0 0 309 268 112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 6,037                                | 3,752 2,575 0 286 231 110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897 700 0 15,405                                                   | 4,222 1,878 0 214 208 107 198 0 776 22 109 0 0 109 2,813 0 13,452 2,113 700 0 25,259            | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>700<br>285  | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 4,482                                                           | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700<br>146<br>-7,932       | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow  NET RECHARGE (AF)                                                                                                        | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>0<br>1,929<br>700<br>0<br>6,893       | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946 700 0 -10,438         | 3,301<br>2,770<br>0<br>482<br>350<br>0<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0                 | 3,740 3,085 0 398 286 286 115 257 0 640 0 0 640 5,302 850 3,752 700 0 -12,153                                    | 2,775 2,012 0 0 309 268 112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 6,037                                | 3,752 2,575 0 286 231 110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897 700 0 15,405                                                   | 4,222 1,878 0 214 208 107 198 0 776 22 109 0 0 109 2,813 0 13,452 2,113 700 0 25,259            | 3,913<br>2,389<br>0<br>253<br>196<br>115<br>240<br>0<br>218<br>22<br>113<br>0<br>0<br>113<br>4,236<br>0<br>15,562<br>3,536<br>700<br>285  | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 4,482                                                           | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700<br>146<br>-7,932       | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood 711-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF)                                                                                                         | 3,435<br>2,673<br>0<br>442<br>301<br>107<br>208<br>0<br>187<br>21<br>85<br>0<br>0<br>85<br>6,906<br>4,277<br>0<br>1,929<br>700<br>0<br>6,893<br>231,829 | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 700 0 -10,438                 | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0<br>-5,542            | 3,740 3,085 0 398 286 115 257 0 227 30 640 0 640 5,302 5,420 3,752 700 0 -12,153 203,696                         | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 0 590 3,843 0 4,890 3,143 700 0 6,037                            | 3,752<br>2,575<br>0<br>286<br>231<br>110<br>220<br>0<br>195<br>25<br>115<br>0<br>0<br>115<br>3,597<br>0<br>7,700<br>2,897<br>700<br>0 | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813 0 13,452 2,113 700 0 25,259 250,397    | 3,913 2,389 0 253 196 115 240 0 218 221 113 0 0 113 4,236 0 15,562 3,536 700 564 285                                                      | 3,785<br>1,296<br>0<br>286<br>270<br>116<br>216<br>0<br>194<br>22<br>113<br>0<br>0<br>13,585<br>0<br>13,864<br>2,885<br>700<br>809<br>4,482 | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>22<br>112<br>0<br>0<br>1,906<br>4,140<br>700<br>146<br>-7,932<br>247,232                 | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/IE 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                                                  | 3,435 2,673 0 442 301 107 208 0 187 21 85 0 0 85 6,906 4,277 0 1,929 700 0 6,893 231,829                                                                | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 0 -10,438 221,391           | 3,301<br>2,770<br>0<br>482<br>350<br>0<br>0<br>233<br>27<br>486<br>0<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0<br>-5,542<br>215,849     | 3,740 3,085 0 398 286 286 115 257 0 640 0 0 640 5,302 850 3,752 700 0 -12,153 203,696                            | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 6,037 209,733                          | 3,752 2,575 0 286 231 110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897 700 15,405 225,138                                             | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813 0 0 13,452 2,113 700 0 25,259 250,397  | 3,913 2,389 0 253 196 115 240 0 218 22 113 0 0 113 4,236 0 15,562 3,536 285 2250,682                                                      | 3,785 1,296 0 286 270 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 809 4,482 255,164                                       | 2,701 904 0 322 321 108 247 0 225 2112 0 0 112 4,840 0 7,906 4,140 700 146 -7,932 247,232                                                             | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 3S/1E 1P3 Castlewood Tri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY STORAGE (AF)                                                                                  | 3,435 2,673 0 442 301 107 208 0 187 21 85 0 0 85 6,906 4,277 0 0 6,893 231,829 2011 232 235 233                                                         | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 2,946 700 0 -10,438 221,391 | 3,301<br>2,770<br>0<br>482<br>350<br>0<br>0<br>233<br>27<br>486<br>0<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0<br>-5,542<br>215,849     | 3,740 3,085 0 398 286 287 257 0 640 0 0 640 5,302 850 3,752 700 0 -12,153 203,696                                | 2,775 2,012 0 309 268 112 243 0 213 30 590 0 0 3,843 0 4,890 3,143 700 0 6,037 209,733                        | 3,752 2,575 0 286 231 110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897 700 0 15,405 225,138                                           | 4,222 1,878 0 214 208 107 198 0 0 176 22 109 0 0 109 2,813 0 13,452 2,113 700 0 255,259 250,397 | 3,913 2,389 0 253 196 0 253 196 0 218 22 113 0 0 113 4,236 0 15,562 3,536 250,682 2018 251 246 2251                                       | 3,785 1,296 0 286 270 286 270 116 216 0 194 22 113 0 0 113 3,585 0 13,864 2,885 700 809 4,482 255,164                                       | 2,701 904 0 322 321 108 247 0 225 22 112 0 0 112 4,840 0 7,906 4,140 700 146 -7,932 247,232                                                           | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>642<br>46,818<br>6,015<br>1,047<br>157,219<br>68,793<br>109,612<br>32,506<br>18,292                                     |
| City of Pleasanton Cal. Water Service Camp Parks SFWD Fairgrounds Domestic Golf Courses 35/1E 1P3 Castlewood 7ri-Valley Golf Agricultural Pumpage SFWD Concannon Calculated Mining Use Stream Export Discharges to Cope Lake Evaporation Production Subsurface Basin Overflow NET RECHARGE (AF) INVENTORY GROUNDED to TAF) STORAGE CALCULATION INVENTORY (Rounded to TAF) GWELEVATIONS (Rounded to TAF) | 3,435 2,673 0 442 301 107 208 0 187 21 85 0 0 85 6,906 4,277 0 1,929 700 0 6,893 231,829                                                                | 3,900 3,333 0 482 318 90 236 0 214 22 95 0 0 95 8,322 4,676 0 0 -10,438 221,391           | 3,301<br>2,770<br>0<br>482<br>350<br>105<br>260<br>0<br>233<br>27<br>486<br>0<br>0<br>486<br>8,391<br>4,796<br>0<br>2,895<br>700<br>0<br>-5,542<br>215,849 | 3,740 3,085 0 398 286 286 115 257 0 227 30 640 0 640 5,302 850 5,420 3,752 700 0 -12,153 203,696                 | 2,775 2,012 0 309 268 112 243 0 213 30 0 590 0 4,890 3,143 700 0 6,037 209,733                                | 3,752 2,575 0 286 231 110 220 0 195 25 115 0 0 115 3,597 0 7,700 2,897 700 15,405 225,138                                             | 4,222 1,878 0 214 208 107 198 0 176 22 109 0 0 109 2,813 0 0 13,452 2,113 700 0 25,259 250,397  | 3,913 2,389 0 253 196 115 240 0 218 22 113 0 0 15,562 3,536 700 564 285 260,682                                                           | 3,785 1,296 0 286 270 116 216 0 194 22 113 0 0 13,865 0 13,864 2,885 700 809 4,482 255,164                                                  | 2,701<br>904<br>0<br>322<br>321<br>108<br>247<br>0<br>225<br>2112<br>0<br>0<br>112<br>4,840<br>0<br>7,906<br>4,140<br>700<br>146<br>-7,932<br>247,232 | 3,264<br>2,761<br>188<br>403<br>288<br>109<br>200<br>8<br>178<br>14<br>996<br>128<br>22<br>846<br>6,369<br>3,345<br>1,454<br>2,332<br>692<br>389<br>750 | 3,500 3,070 0 450 310 200 225 0 205 20 400 4,600 700 NA 3,200 700 1,000                                           | 11,611<br>153,386<br>129,780<br>8,819<br>18,956<br>13,527<br>5,123<br>9,390<br>397<br>8,351<br>642<br>46,818<br>6,015<br>1,047<br>39,756<br>299,337<br>157,219<br>68,79<br>109,612<br>32,506<br>18,292 |


Artificial Components Natural Components



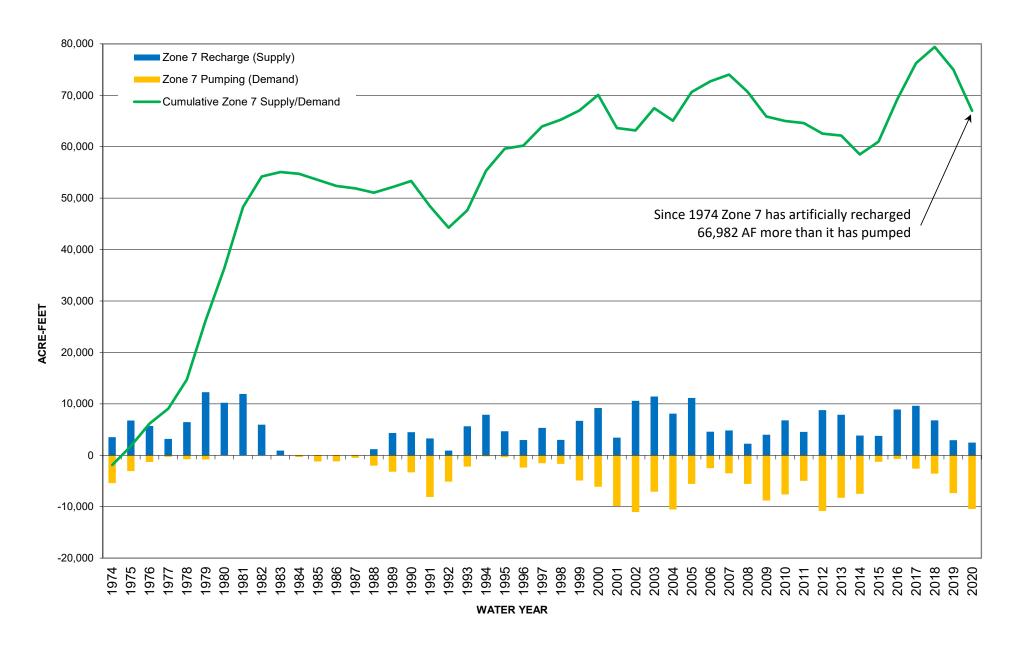






## FIGURE 11-3 GRAPH OF GROUNDWATER STORAGE 1974 - 2020 WATER YEARS LIVERMORE VALLEY GROUNDWATER BASIN








## FIGURE 11-5 CUMULATIVE CHANGE IN NATURAL AND ARTIFICIAL RECHARGE AND DEMAND 1974 - 2020 WATER YEARS LIVERMORE VALLEY GROUNDWATER BASIN





## FIGURE 11-6 GRAPH OF CUMULATIVE CONJUNCTIVE USE SUPPLY AND DEMAND SINCE 1974 WY LIVERMORE VALLEY GROUNDWATER BASIN



## 12 Groundwater Supply Sustainability

#### 12.1 Introduction

This section provides an update on the projects and management actions described in *Section 5*, *Projects and Management Actions*, of the Alternative GSP. Zone 7 is sustainably managing the Livermore Valley Groundwater Basin through numerous interrelated programs to assess, manage, monitor, and protect the groundwater supply. Using information from its robust monitoring programs, Zone 7 adaptively manages its groundwater supply with regard for current hydrologic conditions, water demands, water quality conditions, and future water supply/demand forecasts. In addition to continuing the monitoring programs that are critical to Zone 7's sustainable groundwater management, Zone 7 is also working to improve long-term surface water supply reliability, maximize conjunctive use opportunities, provide watershed protection, and support water recycling operations.

### 12.2 Import of Surface Water

The availability of State Water Project (SWP) supplies is fundamental to Zone 7's maintenance of its basin measurable objectives for sustainable groundwater levels and storage, avoidance of subsidence, and protection of groundwater dependent eco-systems (GDEs). Zone 7 ensures that local groundwater supplies are not depleted by importing an average of 75% of the Valley's water demand (60% in 2020 WY). This imported water is delivered to Zone 7 through the South Bay Aqueduct (SBA) and is used for municipal and agricultural supplies and for recharging the Main Basin aquifers (artificial recharge). In accordance with DWR's accounting time-interval of SWP water, the totals in this section of the report are presented by Calendar Year (CY). Details regarding the surface water supply sources and contract amounts are provided in *Section 2.4.4.2*, *Imports and Surface Water Supplies*, of the Alternative GSP.

The SWP allocation for the 2020 CY was 20% of Zone 7's maximum allocation (80,619 AF). *Table 12-A* shows Zone 7's imported water supplies for 2020 CY and the amounts being carried over to the 2020 CY.

Imported surface water supplies in the 2020 CY made up 60% of regional water demands.
 This imported surface water allowed 33,761 AF of groundwater to be conserved instead of being pumped to meet this demand.

Table 12-A: Imported Water Sources for the 2020 Calendar Year (AF)

| Source                                            | Available at end of 2019 | Added in 2020 * | Used in 2020 | Carryover<br>to 2021 |
|---------------------------------------------------|--------------------------|-----------------|--------------|----------------------|
| State Water Project                               | 10,810                   | 16,124          | 18,070       | 8,864                |
| Table A                                           | 0                        | 16,124          | 7,260        | 8,864                |
| Article 56                                        | 10,810                   | 0               | 10,810       | 0                    |
| Byron-Bethany Irrigation<br>District <sup>†</sup> | 0                        | 0               | 0            | 0                    |
| Kern Groundwater Basin                            | 117,075                  | 0               | 1,000        | 116,075              |
| Semitropic                                        | 87,170                   | 0               | 1,000        | 86,170               |
| Cawelo                                            | 29,905                   | 0               | 0            | 29,905               |
| Other                                             | 0                        | 7,111           | 7,111        | 0                    |
| Turnback Pool                                     | 0                        | 0               | 0            | 0                    |
| Yuba/Other                                        | 0                        | 7,111           | 7,111        | 0                    |
| Lake Del Valle (AV Water<br>Rights)               | 8,100                    | 600             | 8,700        | 0                    |
| Total                                             | 135,985                  | 23,835          | 34,881       | 124,939              |

<sup>\* 20%</sup> State Water Project Allocation for 2020 WY

AV = Arroyo Valle

## 12.3 Valley-Wide Water Production and Use

The volume of water produced and used in the Livermore Valley is shown in *Figure 12-A* (by Water Year) and *Figure 12-1* (by Water Year except where noted).

<sup>&</sup>lt;sup>†</sup> BBID Agreement terminated in 2021 WY

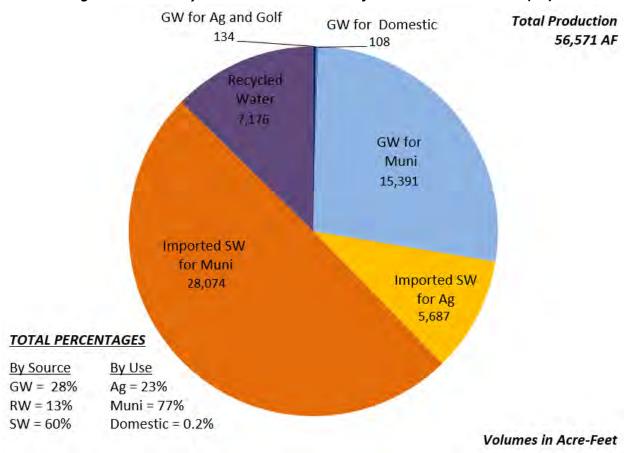



Figure 12-A: Valley-Wide Water Production for the 2020 Water Year (AF)

Ag = Agriculture; Muni = Municipal; GW= Groundwater; RW = Recycled Water; SW = Surface Water

Figure 12-2 shows the historical percentage of groundwater production relative to total Valleywide production from the 1974 to 2020 WYs. The following activities occurred during the 2020 WY:

- Total groundwater production in the Valley (including by Zone 7, retailers, agriculture, domestic, etc.) supplied about 28% of the total Valley-wide water demand in the 2020 WY.
- Of the 11,746 AF of groundwater pumped by Zone 7 during the 2020 WY, about 11,346
  AF went into production; the remainder of which is accounted for in pumping losses and
  exported brine from the groundwater demineralization process.
- Zone 7's total produced groundwater was about 28% of the total treated water production that Zone 7 delivered to its retailers during the 2020 WY (on average, groundwater makes up about 15% of Zone 7's annual treated water deliveries).

## 12.4 Future Supply Reliability

Zone 7 continues to implement a multi-faceted strategy for securing the long-term reliability of the water supply system to meet the needs of both existing and future customers. This strategy includes the following components:

- Increased yield from the Arroyo Valle local water right using the Chain of Lakes (COLs).
- Maximized groundwater storage in Kern County groundwater banks.
- Access to emergency water supply in the local COLs.
- Support of the Delta Conveyance Project (former CA WaterFix) to restore yield from the SWP.
- Pursuit of alternative water supply (e.g., Sites Reservoir, potable reuse, interagency transfers, and regional desalination) and storage (e.g., Los Vaqueros Expansion) options.

Local water is a key component of Zone 7's future water supply portfolio. In 2020, Zone 7 continued its petition to extend Zone 7's water rights permit for diverting surface water captured in Lake Del Valle from the upper Arroyo Valle. Under the existing permit, Zone 7's average annual yield from the upper Arroyo Valle is about 7,300 AF/yr. A diversion structure from Arroyo Valle into Lake A, and a pipeline connecting Lake A to other lakes in the COLs, are included in Zone 7's Capital Improvement Plan (CIP, 2018-2028). Once constructed, these projects will facilitate the capture and storage of additional water from the Del Valle Watershed up to about 3,000 AF/yr on average.

Investments in out-of-basin groundwater banks in Kern County (i.e., Cawelo Groundwater Banking Program and Semitropic Stored Water Recovery Unit) allow Zone 7 to augment imported surface water supplies during times of low SWP allocations. Zone 7 elected to use 1,000 AF of its allocation in Semitropic in the 2020 CY. Zone 7 currently has 116,075 AF of water banked in the Kern Groundwater Basin.

In a normal year, about 80% of Zone 7's supply is derived from the SWP. The SWP reliability has been declining over the years due to increasingly stringent regulations, declining Delta conditions and infrastructure, and climate change. To protect the Valley's major water supply, Zone 7 has been supporting the Delta Conveyance Project, the State of California's proposed project to upgrade the SWP system infrastructure and operations and improve its long-term reliability while protecting the Sacramento-San Joaquin Delta (Delta) ecosystem. At this time, while the project's design is still being re-evaluated, Zone 7 is assuming that some form of the Delta Conveyance Project would be in-service by 2040.

Zone 7 is also continuing to evaluate alternative water supply and storage options such as the Bay Area Regional Desalination Project, potable reuse, Los Vaqueros Expansion, Sites Reservoir, and water transfers. Ultimately, Zone 7 may choose to implement one or several of these options depending on the results of the studies and planning efforts, the amounts and timing of development and conservation, and the determination of costs and benefits to the Valley.

Finally, Zone 7 has been evaluating the feasibility of an intertie with another major water agency (e.g., East Bay Municipal Utilities District or San Francisco Public Utilities Commission). An outage of the SBA, or major disruptions in the Delta, would prevent Zone 7 access to most of its water supplies, leaving only groundwater, water in the Chain of Lakes, and water in Lake Del Valle available to meet its demands. An intertie with another agency could provide an additional source of water during an emergency or drought and could also facilitate water transfers.

Additional information regarding Zone 7's efforts to increase future supply reliability is provided in *Section 5.2.1, Import of Surface Water*, of the Alternative GSP and Zone 7's Water Supply Evaluation Update (*Zone 7, 2016b*).

#### 12.5 Water Conservation

By managing water demands, water conservation is basic to ongoing achievement of basin measurable objectives including management of groundwater levels and storage, avoidance of land subsidence, maintenance of groundwater quality, and protection of groundwater dependent eco-systems. Responsive to the Urban Water Management Planning Act, all the urban retailers within the Basin (CWS, DSRSD, Livermore, and Pleasanton) have prepared Urban Water Management Plans which include a Water Shortage Contingency Plan that provides a response to drought and other shortages. As documented in Zone7's 2015 Urban Water Management Plan (Zone 7, 2016c), Zone 7 is on track with all applicable BMPs for water demand management.

In addition, Zone 7 continues to work closely with the retailers on the Valley-wide conservation program, providing rebates, offering public outreach and education, and securing grants to support the program. Zone 7 regularly updates the program to focus on the most cost-effective elements and to implement the latest regulations. Water conservation by Zone 7 and the retailers is ongoing and discussed in greater detail in *Section 5.2.6*, *Water Conservation*, of the Alternative GSP. Throughout the 2020 WY, Zone 7 continued its regional coordination of conservation programs, including community workshops and other education/training events, school education programs, and rebates and water-saving giveaway programs, with adjustments made for pandemic conditions.

### 12.6 Chain of Lakes Recharge Projects

The Chain of Lakes (COLs) are a series of former quarry lakes located in the heart of the Livermore-Amador Valley (*Figure 12-3*). Best described in the 1981 Specific Plan for Livermore Amador Valley Quarry Area Reclamation (*Alameda County, 1981*), the COLs were envisioned as a large water management facility to be used by Zone 7. The COLs will ultimately consist of ten lakes (named Lakes A through Lake I, and Cope Lake) connected through a series of conduits. The general vision is that Zone 7 would use the lakes for water management and related purposes. Water management includes, but is not limited to, groundwater recharge, surface water storage and conveyance, and flood protection.

Of the ten lakes, two have been transferred to Zone 7 ownership (Lake I and Cope Lake) and are currently operated and maintained by Zone 7 for water storage and groundwater replenishment. The remaining lakes are still being mined or reclaimed under surface mining permits (SMPs) issued to the individual quarry operators by the Alameda County Community Development Agency (ACCDA) (the administrative representative of the state for mining operations and reclamation). Background information on the COLs is provided in *Section 2.3.10.3*, *Mining Areas*, *Section 4.4*, *Chain of Lakes and Quarry Operations Monitoring*, and *Section 5.2.4*, *COLs Recharge Projects* of the Alternative GSP.

During the 2020 WY, Zone 7 continued to work with Hanson Aggregates (former quarry operator for Lakes H, I, and Cope) while they continue the process of permitting a future diversion structure to divert artificial flows from Arroyo Mocho into Lake H. The U.S. Army Corp of Engineers approved the permit application submitted by Hanson in the 2017 WY. Hanson is still responding to the RWQCB comments on the design submitted in the 2017 WY, and future diversion operations are still being evaluated. Once installed, this diversion facility will allow SWP water released from the SBA to be diverted from the Arroyo Mocho into Lake H, and ultimately, Lake I for groundwater recharge. Lake H is connected to Lake I via a 30-inch-diameter conduit.

Another quarry operator, CEMEX, submitted a revised application to amend SMP-23 and the associated reclamation plan in the 2019 WY. The amendment eliminated any additional mining in Pits P28 and P41 (Lake A), while increasing the amount mined in Pits P42 (Lake B) and P46 (Lake J). Zone 7 is working with CEMEX to understand the potential impacts the proposed deeper mining in Lakes B and J will have on the groundwater basin. Zone 7 and CEMEX participated together on a hydrogeologic study to further characterize the hydrogeology around Lake B during the 2018 WY. CEMEX has also had additional studies completed as part of the Environmental Impact Report (EIR) process for their 2019 amendment. The EIR is shoulded to be completed in the 2021 WY. Staff will continue to work closely with the ACCDA on the SMP-23 amendment process.

The original COLs were anticipated to be completed by 2030; however, due to various circumstances, mining and reclamation is now anticipated to be completed closer to 2060.

Therefore, Zone 7 is planning to complete a Chain of Lakes Pipeline that will convey water to and from the Del Valle Water Treatment Plant (DVWTP), the SBA, and the available lakes in the COLs. This infrastructure will allow use of the lakes for water management operations as early as 2025. The Chain of Lakes Pipeline will be a multi-use pipeline expected to perform the following key functions:

- convey excess imported surface water supply to the COLs for recharging the groundwater basin,
- capture and convey excess water from the Arroyo Del Valle watershed for storage and recharge in the COLs, and
- supply raw water from the COLs for treatment at the DVWTP under emergency/drought situations.

In February 2020, Zone 7 initiated a Chain of Lakes Pipeline Alignment Study to assess possible alignments for the future pipeline.

#### 12.7 Well Master Plan

In the early 2000s, Zone 7 identified the need to increase its groundwater production capacity to meet customer demands during projected droughts and water shortage emergencies. Zone 7's Well Master Plan (WMP), adopted by the Zone 7 Board in 2005, concluded that Zone 7 would need to install several new municipal water supply wells over the next 20-30 years to maintain Zone 7's potable water reliability goal. Additional benefits of these new wells would include providing Zone 7 with improved operational flexibility to pump its stored water resources and remove dissolved salts from more of the groundwater basin.

Since 2005, Zone 7 has constructed three new municipal supply wells (COL 1, COL 2 and COL 5) bringing Zone 7's total to ten wells. In 2012, Zone 7's Board adopted new reliability goals. Together with implementation of additional water conservation measures, and expansion of recycled water use by retailers, the need for new wells has changed. During the 2020 WY, Zone 7 staff continued the process of reevaluating Zone 7's supply well needs. Site specific evaluation and future well construction will depend on the outcome of PFAS investigations and future regulatory requirements. It is anticipated that the WMP will be updated after more is known about the extent of PFAS in the basin.

## 12.8 Sustainable Groundwater Management Ordinance

On June 21, 2017, the Zone 7 Board of Directors adopted the Zone 7 Sustainable Groundwater Management Ordinance (Zone 7 Ordinance 2017-01). The ordinance was created to enhance existing sustainable management programs for the local groundwater basin. The ordinance can be viewed and downloaded from Zone 7 website:

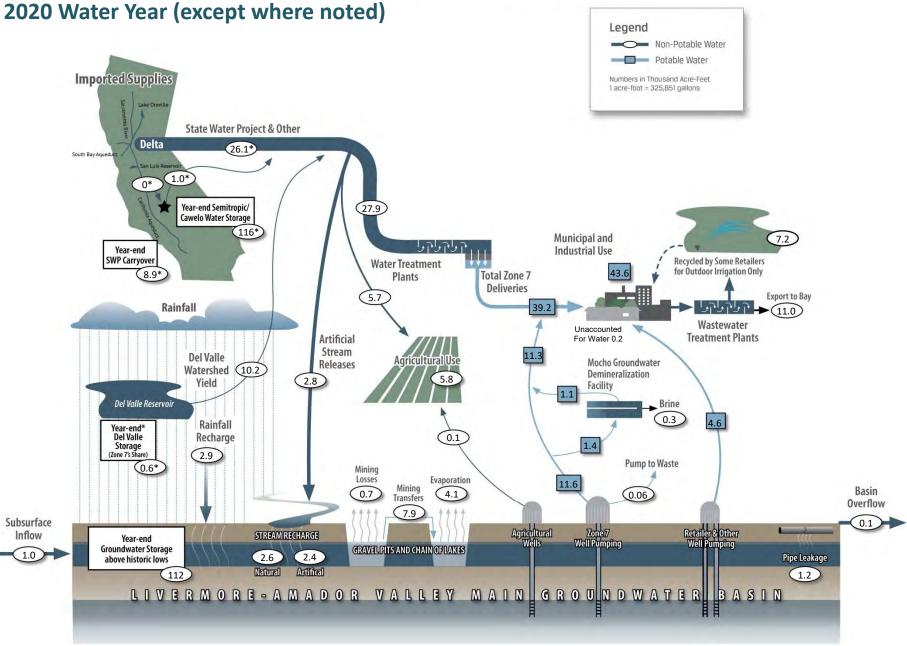
http://www.zone7water.com/images/pdf docs/groundwater/groundwater ordinance 2017-01.pdf

The Zone 7 Sustainable Groundwater Management Ordinance recognizes groundwater as an essential resource for municipal, industrial, and domestic uses, as well as agricultural production, and sets provisions for groundwater protection within Eastern Alameda County. Not protecting the Basin from unsustainable extraction of groundwater could have adverse economic effects, including loss of arable land, a decline in property values, increased pumping costs due to the lowering of groundwater levels, and increased water quality treatment. Nothing in the ordinance determines or alters water rights, groundwater rights, or existing county ordinances (such as the well ordinance that establishes fees and criteria for permitting new wells).

Under the ordinance, the following actions are prohibited:

- The unsustainable extraction or wasteful use of groundwater within the service area.
- The export of water to areas or users outside the service area.
- The waste or unreasonable use of surface water within the service area.
- Zone 7 plans to establish a permit system to authorize water management practices otherwise prohibited where those practices are for reasonable and beneficial use of groundwater.

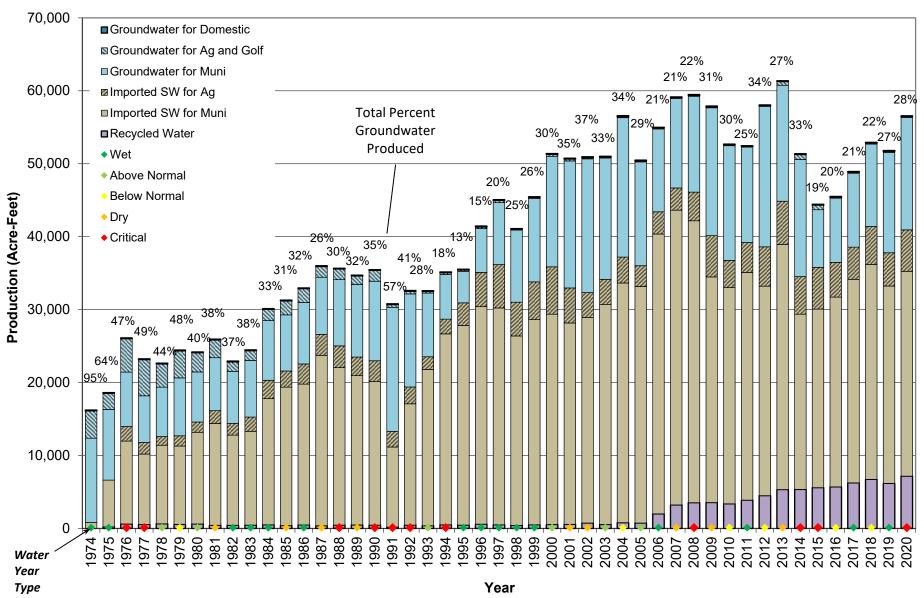
The ordinance also includes provisions that allow Zone 7 to continue to collect groundwater data from all parties, including public water agencies that extract groundwater within the service area, for the purpose of monitoring existing groundwater conditions and trends.

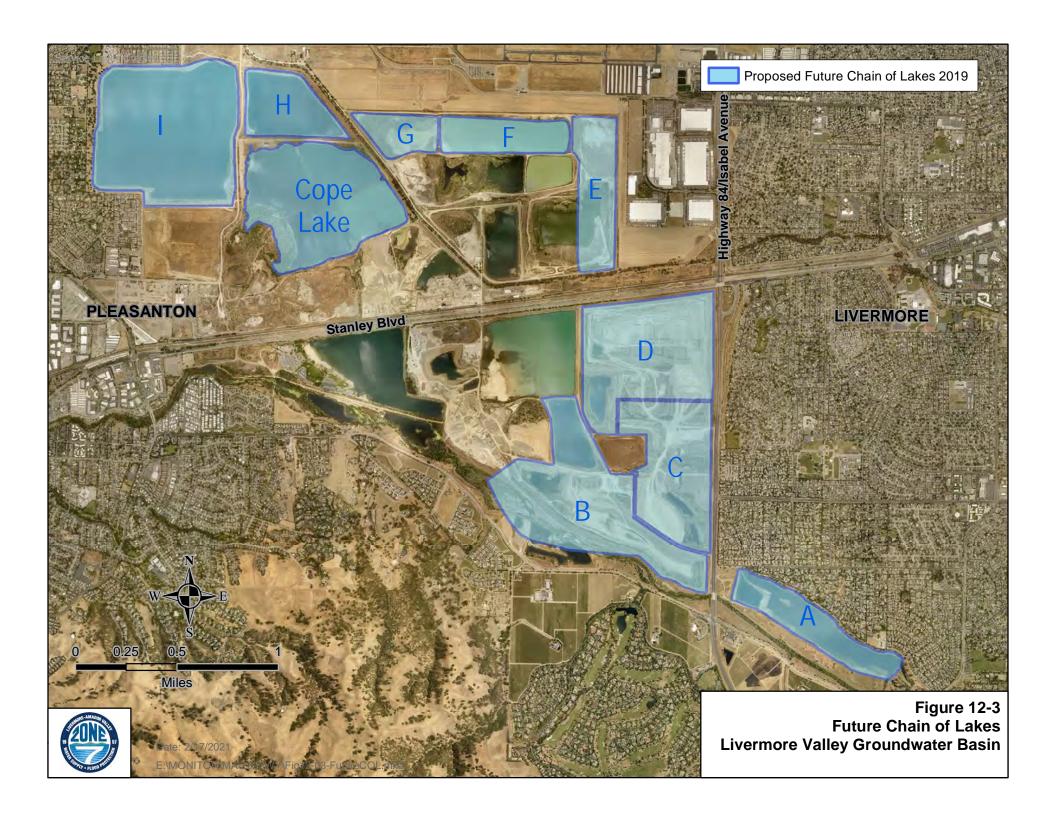

## 12.9 Existing and Future Recycled Water Use

Zone 7 views recycled water as a valuable component of the local water portfolio when managed appropriately under a Salt Nutrient Management Plan (SNMP). Recycled water can reduce the

demand for surface water imports and pumped groundwater and can contribute to groundwater storage when incidental percolation occurs during irrigation of landscapes and crops.

Most of the recycled water used in the Valley is for landscape irrigation, with a minor amount used for dust suppression, grading projects, and crop irrigation. Only a small portion of the applied recycled water percolates to the groundwater supply; most of the applied water is evaporated, taken up by plant roots, lost through plant transpiration, or retained as moisture in the unsaturated zone. The total amount of recycled water for the 2020 WY is discussed in *Section 10, Wastewater and Recycled Water*.


From 2016 to the present, Zone 7 continues to be part of a joint effort by the Tri-Valley water agencies, studying the technical feasibility of potable reuse, or purified recycled water, to enhance long-term water supply reliability. In May 2018, the Tri-Valley water agencies completed the Joint Tri-Valley Potable Reuse Technical Feasibility Study. The primary goals of the study were to evaluate the feasibility of a wide range of potable reuse options for the Tri-Valley based on technical, financial, and regulatory considerations, and to recommend next steps for the agencies if potable reuse was found to be technically feasible. The results suggested that potable reuse was indeed technically feasible. Options for potable reuse that were evaluated include purification followed by either groundwater recharge (through injection or surface water recharge) or blending with other surface water and treating the blend at a Zone 7 surface water treatment plant. Connecting a water purification facility directly to the treated water transmission system was not considered in the study. The next steps that were identified include a regional water demand study, regional water supply updates, and technical studies regarding the COLs, groundwater desktop and field investigations, and potential groundwater injection well locations.




\* 2020 Calendar Year Figure 12-1



## FIGURE 12-2 VALLEY WATER PRODUCTION FROM IMPORTED WATER AND GROUNDWATER 1974 TO 2020 WATER YEARS





## 13 Water Quality Sustainability

#### 13.1 Introduction

Recognizing the importance of the groundwater basin for supply and storage, Zone 7 has long championed groundwater quality protection. Its ongoing programs are directly beneficial for maintaining groundwater quality, meeting basin plan objectives (*California RWQCB, 2011*) and are indirectly supportive of groundwater supply objectives. For example, Zone 7 started sampling for PFAS and Cr before the regulatory requirements were released. In addition, Zone 7's Board has a Water Quality Policy that states that Zone 7's delivered water quality will meet a threshold that is 80% of the MCL. Specific Zone 7 groundwater quality programs and management actions include:

- Well Ordinance Program requires permitting for the construction, repair, reconstruction, and destruction or abandonment of wells and borings. The program also includes permit compliance inspections.
- The Toxic Sites Surveillance (TSS) Program tracks progress of polluted sites across the groundwater basin that pose a potential threat to drinking water. Zone 7 also interfaces with lead regulatory agencies to ensure that their actions adequately protect groundwater quality.
- Salt Management Program addresses the increase in TDS observed in some portions
  of the groundwater basin as outlined and addressed in Zone 7's 2004 Salt Management
  Plan (SMP, Zone 7, 2004). Implementation has included modifications to existing
  conjunctive use programs, plus development of the Zone 7 Mocho Groundwater
  Demineralization Plant (MGDP).
- Nutrient Management Program involves ongoing monitoring of nitrate in groundwater and coordination with land use agencies and ACDEH to manage nitrogen loading to the Basin, as outlined and addressed in Zone 7's 2015 Nutrient Management Plan (NMP, Zone 7, 2015b).

The following sections provide the 2020 WY updates to the above programs including details of any significant changes that were made during the water year.

## 13.2 Well Ordinance Program

Zone 7 administers the associated well permit program within its service area including the three incorporated cities (Dublin, Livermore, and Pleasanton) pursuant to a MOU with Alameda County and ordinances adopted by the three cities. As a result, any planned new well construction, soil-

boring construction, or well destruction must be permitted by Zone 7 before the work is started. Additionally, all unused or abandoned wells must be properly destroyed, or, if there are plans to use the well in the future, a signed statement of future intent must be filed with Zone 7.

During the 2020 WY, Zone 7 issued 116 drilling permits, 23 less permits than in the 2019 WY. *Table 13-A* details the breakdown of the types of permits issued during the 2020 WY and their quantities.

Table 13-A: Well Ordinance Permits Issued in the 2020 Water Year

| Permit Type                              | Quantity |
|------------------------------------------|----------|
| Geotechnical Investigations              | 59       |
| Well Destructions                        | 15       |
| Contamination Investigations/Remediation | 18       |
| Water Supply Wells                       | 11       |
| Groundwater Monitoring                   | 8        |
| Cathodic Protection Wells                | 5        |
| Total                                    | 116      |

- Eleven (11) water supply well permits were issued in the 2020 WY. The pre-drought average was 25 per year.
- About 79% of the permitted well work was physically inspected by Zone 7 permit compliance staff; the remaining 21% could proceed with self-monitoring and reporting efforts when a licensed professional was supervising the project.

## 13.3 Toxic Site Surveillance Program

#### 13.3.1 Program Description

Through the TSS Program, Zone 7 documents and tracks polluted sites that pose a potential threat to drinking water. In general, the TSS Program monitors two types of contamination threatening groundwater: petroleum-based fuel products and industrial chemical contamination (e.g., chlorinated solvents).

The TSS Program is directly applicable to the basin measurable objective of maintaining and protecting groundwater quality through its provision of information to agencies and the public. The TSS Program also supports basin measurable objectives of maintaining groundwater levels

and storage and helps to protect municipal wells that have an integral role in conjunctive use. There were no administrative changes to the TSS monitoring program in the 2020 WY.

#### 13.3.2 Active Cases

In the 2020 WY, Zone 7 tracked the progress of 56 active sites where contamination has been detected in groundwater or is threatening groundwater. Eleven of these active sites have a contaminant plume that is within 2,000 ft of a water supply well or a surface water source and are therefore classified as "High Priority" cases due to their impact or threat of impact on potable groundwater supplies. Zone 7's database also contains 283 other contamination cases that have been either "Closed" or classified as "No Action Required" because they have been sufficiently cleaned up and/or pose minimal threat to drinking water supplies.

The locations of all the toxic sites, and their proximity to the Valley's municipal water wells, are shown on the accompanying individual area maps (*Figure 13-1* through *Figure 13-3*, Livermore, Pleasanton/Sunol, and Dublin, respectively). *Table 13-1* contains a summary for each of the 56 active sites including the case status, its priority, and which agency is responsible for providing oversight for the case. It also identifies the contaminants of concern for each case and provides brief notes regarding the cases in the 2020 WY. In addition, copies of plans, reports, directive letters, and background data on the cases can be found at the State Water Resources Control Board's (SWRCB's) GeoTracker website: <a href="http://geotracker.waterboards.ca.gov/">http://geotracker.waterboards.ca.gov/</a>. The GeoTracker number for each case (if one is assigned) is also included in *Table 13-1*.

#### 13.3.3 Case Closures

Three toxic sites were granted "Case Closed" status in the 2020 WY. Their locations are shown on *Figure 13-4* and are summarized below (from west to east).

- Site 68: Chevron, #9-2582 (Dublin Auto Wash), Dublin. This case met the <u>Low-Threat Underground Storage Tank Closure Policy</u> (LTCP) Scenario 2 criteria for closure. Some localized methyl tertiary-butyl ether (MTBE) contamination remains in groundwater, but the plume appears to be decreasing. There are no municipal supply wells in Dublin and the site is over 1,000 ft from any private supply wells. ACDEH closed this case and Zone 7 staff did not object to its closure.
- Site 31: Dublin Toyota Pontiac, Dublin. The Regional Water Quality Control Board (RWQCB) closed this case under the LTCP. This case met all the required general and media-specific criteria of the LTCP Case Closure Policy. The petroleum release is limited to the soil and shallow groundwater, the nearest existing supply well is greater than 1,000 feet from the defined plume boundary, and the dissolved concentration of benzene and MTBE met the LTCP criteria for groundwater. Although the contaminant plume is over 100 feet in length and there is a drainage channel less than 1,000 feet from the projected

plume boundary, a site-specific evaluation shows low threat of contaminated groundwater impacting the drainage channel. Zone 7 staff did not object to the case closure.

Site 191: Former Beacon, #3604/Ultramar, Livermore. In September 2018, the Responsible Party (RP) submitted a Conceptual Site Model Update and Closure Request. Multiple remedial technologies have been conducted at the site over the past 25 years including excavation, soil vapor extraction (SVE), air sparging, oxygen injection, and insitu chemical oxidation (ISCO). ACDEH agreed to the case being closed under LTCP Scenario 5 because the remaining contaminant plume poses low risk to human and environmental health. Staff did not object to the closure of this case.

#### 13.3.4 Sites Pending Closure Review

"Case Closure" was requested by representatives for the seven contamination sites listed below. Their locations are provided on *Figure 13-4*. At the end of the 2020 WY, the lead agencies were still considering the requests but may ask for additional information before making their decision. Cases approved for closure by ACDEH must be reviewed and accepted by the RWQCB before they are officially closed. Information on each pending closure request, including Zone 7's recommendations, is summarized as follows (from west to east):

- Site 209: Shell #13-5244, Dublin. MTBE in the groundwater is the main concern at this site. Soil excavation in the source area was performed, and quarterly groundwater monitoring indicates the MTBE constituent plume is stable. The lateral extent of MTBE in groundwater is not fully defined, however this site is at least 2,000 feet from the nearest supply well. ACDEH did not dispute the RP's assertions that the *General Criteria and Media Specific Criteria for Direct Contact and Outdoor Air Exposure* have been satisfactorily addressed and *Media Specific Criteria for Groundwater* have been addressed to the extent practicable. This case meets the criteria presented in the LTCP and is therefore eligible for regulatory case closure pursuant to California Health and Safety Code Section 25296. Staff does not object to closure of this case.
- Site 284: Former Crow Canyon Dry Cleaner, Dublin. The RP requested closure in 2015 based on the success of remedial actions, and because the vapor measurements are below Environmental Screening Levels (ESLs). Vapor contamination is the main concern at the site. The groundwater detections for tetrachloroethylene (PCE) and trichloroethylene (TCE) are below their respective MCL. ACDEH directed the RP to conduct additional work to move ACDEH's consideration forward. The RP has not followed through with the work requested by ACDEH. Staff does not object to the groundwater case closure if the additional work is completed to ACDEH satisfaction and the groundwater detections remain below MCLs.

- Site 308: Green on Park Place, Dublin. The case was slated for closure in 2014 but the case closure was never finalized. The only tasks remaining in October 2014 involved properly disposing of contaminated stockpiled soil. ACDEH sent a compliance letter to the RP in the 2019. Staff does not object to the closure of this case if the remaining tasks are completed to ACDEH satisfaction.
- Site 37: Applied Biosystems, Pleasanton. A 5-year remedial action review report was submitted by the RP in July 2018. The report showed that the groundwater concentrations in the sole remaining monitoring well were below MCLs for PCE, TCE, and 1, 1-Dichloroethene (DCE). The RP requested permission to discontinue groundwater monitoring, for the well to be destroyed, the case closed, and the deed restriction rescinded. The Department of Toxic Substances Control (DTSC) approved discontinuing the groundwater sampling and then requested a well decommissioning plan. DTSC said the removal of the deed restriction will need to be done in accordance with Health and Safety Code 25224 following the well decommissioning. Staff does not object to the pending closure.
- Site 317: Walgreens Spill, Sunol. Case was approved for closure by ACDEH under the LTCP.
   To finalize the case closure, ACDEH required the RP to remove any remaining waste from
   the site and to provide a report by April 22, 2018. The report has not been submitted to
   GeoTracker, so the case closure is still pending. There was no progress in the 2020 WY.
   Staff does not object to the case closure if the remaining tasks are completed to ACDEH
   satisfaction.
- Site 313: Just Tires, Livermore. This case is a soil contamination case slated for closure; no
  fuel contaminants were detected in groundwater beneath the site. Comments on pending
  closure were due January 2016. ACDEH sent multiple letters to the RP to finalize the
  closure report, but they have not responded. There was no progress in the 2020 WY. Staff
  does not object to the pending case closure if the remaining tasks are completed to
  ACDEH satisfaction.
- Site 292: K&S Heavy Equipment, Livermore. A Subsurface Investigation Report submitted to ACDEH recommended no further investigation based no residual contaminant mass found in soil beneath the extent of the historic excavation and no organochlorine pesticides detected. Groundwater contamination is not an issue at this site. The RP concluded there is no indication that a risk is present from vapor intrusion into the property building or to workers at the property. Case closure was initiated by ACDEH, which required administrative items be addressed prior to closure approval. Staff does not object to the pending case closure if the remaining tasks are completed to ACDEH satisfaction.

#### **13.3.5** New Cases

The following new cases were added to the Zone 7 TSS Program in the 2020 WY. Their locations are shown on *Figure 13-4*.

- Site 335: J Cleaners, Livermore. This site operated as a dry cleaner in the early 1970s until late 2007. Soil samples collected in 2006 and 2009 detected PCE. The extent of soil vapor and groundwater contamination is being assessed before redevelopment.
- Site 337: Pacific Avenue Cleaners, Livermore. This case involves one operating dry cleaner
  in an existing strip mall structure that used PCE from about 1966 to 2010 and a gasoline
  service station on the western end of the site that operated from about 1963 to 1988.
  PCE has been detected in soil, soil vapor, and groundwater exceeding the current ESLs.
  Fuel related chemicals benzene and xylenes, along with solvents acetone and methyl
  ethyl ketone were detected in soil vapor samples. The site is currently being considered
  for redevelopment.

# 13.4 Salt Management

# 13.4.1 Introduction and Strategy

Agriculture and urban development over the Basin have led to rising salt concentrations in local groundwater as irrigation concentrates the salts and minerals through evapotranspiration processes. This results in higher salinity leachate and percolate recharging groundwater, which impacts overall groundwater TDS concentrations. Impacts from historic, and to a lesser degree current, wastewater disposal practices have also contributed to the increase of groundwater salinity in the Basin. Without management and/or mitigation, groundwater salinity would continue to rise (*Zone 7, 2004*).

In 2004, Zone 7 prepared a SMP (*Zone 7, 2004*) to reduce annual salt loading and increase salt removal to protect the long-term water quality of the Main Basin, while expanding the area's use of recycled water. The SMP was approved by the RWQCB in October 2004 and then incorporated into Zone 7's Groundwater Management Plan in 2005 (*Zone 7, 2005a*).

The SMP is an active ongoing program that uses an adaptive management approach to select the combination of salt management strategies to be implemented each year. The available SMP strategies include salt removal by groundwater pumping, salt export through the operation of Zone 7's MGDP, and reduction of groundwater salinity by artificially recharging lower salinity imported water. See *Section 5.3.3.2, Salt Management Strategy* of the Alternative GSP for more information on the salt management strategies employed by Zone 7.

# 13.4.2 Salt Management for 2020 WY

### 13.4.2.1 Salt Management Actions

No changes were made involving the SMP or SMP strategies in the 2020 WY. The following is a summary of the salt management actions conducted by Zone 7 during the 2020 WY:

- Zone 7 pumped 11,746 AF of higher TDS (585 mg/L, average) groundwater into its distribution system, which resulted in 9,331 tons of salts being removed from the groundwater basin.
- Zone 7 exported 1,231 tons of salts from the Valley with the operation of its MGDP groundwater demineralization facility (discussed in *Section 13.4.2.3*).
- Zone 7 imported and artificially recharged 2,461 AF of lower TDS (202 mg/L, average) surface water, which added 675 tons of salt to the Basin.

### 13.4.2.2 Salt Loading Calculations

Table 13-2 contains the salt loading totals for each Hydrologic Inventory (HI) component for water years 1974 through 2020. Table 13-B below shows the salt loading summary for the 2020 WY. These salt loading calculations consider the addition and removal of salt mass to and from the Main Basin by tracking or estimating the TDS concentration of each Supply and Demand component of the HI and multiplying it by the volume for each HI component (Section 11.1.3., Hydrologic Inventory Results). Net change in salt mass alone is not a good indicator of the change in water quality because it does not consider the amount of water associated with the salt mass increase (or decrease). For example, a larger volume of water having a lower TDS concentration could conceivably contain more salt mass than a smaller volume with higher TDS concentration. Accordingly, Zone 7 calculates an end-of-water-year theoretical average TDS concentration for the entire Main Basin for comparison with previous years (Figure 13-5). For this approximation, Zone 7 assumes a starting average TDS concentration of 450 mg/L in 1973 (DWR, 1974), and then calculates a running annual average TDS concentration based on the annual inflows and outflows and net salt load and removals for each year since then. The results are believed to be conservative or "worst case" because the computation assumes that all the salts in the applied waters are added to groundwater during the annual time-step that they are applied. In reality, some of the salts may end up being fixed in the vadose zone and confining clays.

Category Volume **Salt Mass TDS Concentration** Change in (mg/L)**Concentration from** (AF) (Tons) 2019 WY (mg/L) Inflow 13,516 12,486 680 96 Outflow 21,447 12,961 445 -3 Net (In – Out) -7,931 -475 44 **Basin Total** 247,232 227,384 677 20

Table 13-B: Salt Loading Summary for 2020 WY

- In the 2020 WY, the total salt mass added to the Main Basin by all the inflow (Supply) components was approximately 12,486 tons, whereas the total mass of salts removed from the Basin by all the outflow (Demand) components is estimated at 12,961 tons; a net decrease of 475 tons.
- While the salt load decreased during the 2020 WY, the end-of-water-year theoretical average TDS concentration for the Main Basin increased by 20 mg/L from the previous water year average (657 mg/L TDS in 2019 WY) to 677 mg/L (*Figure 13-5*). This is because the basin storage dropped by 7,931 AF, which essentially concentrates the remaining salt in storage.

## 13.4.2.3 Groundwater Demineralization Program

Zone 7's MGDP reduces salt buildup in the groundwater basin while improving delivered water quality to meet targets established in Zone 7's Water Quality Policy. The MGDP is a reverse osmosis (RO) membrane-based treatment system that produces product water with extremely low TDS. The demineralized water is blended with other groundwater (non-demineralized) or system water to achieve the desired overall delivered water TDS and hardness. The brine concentrate from the RO process is exported out of the watershed to San Francisco Bay by way of the regional wastewater export pipeline operated by the LAVWMA and DSRSD-EBMUD Recycled Water Authority (DERWA).

- During the 2020 WY, the MGDP produced 344 AF of brine (compared to 480 AF in the 2019 WY) that resulted in the export of about 1,230 tons of salt from the Main Basin through the LAVWMA pipeline (compared to 1,869 tons in the 2019 WY).
- Since its inception, the MGDP has exported 18,631 tons of salt from the Valley. Table 13-C below presents the salts removed by the MGDP from its construction in 2009 through the 2020 WY.

Table 13-C: Salts Removed by Zone 7's Mocho Groundwater Demineralization Plant Operations

| Water<br>Year | Brine Volume<br>Exported from Valley<br>(AF) | Average Brine TDS Concentration (mg/L) | Salt Mass<br>Exported<br>(Tons) | Salt Removed per AF<br>of Brine Export<br>(Tons/AF) |
|---------------|----------------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------------------|
| 2009          | 192                                          | 3,059                                  | 798                             | 4.16                                                |
| 2010          | 675                                          | 3,010                                  | 2,760                           | 4.09                                                |
| 2011          | 429                                          | 3,445                                  | 2,008                           | 4.68                                                |
| 2012          | 935                                          | 3,198                                  | 4,062                           | 4.34                                                |
| 2013          | 518                                          | 3,522                                  | 2,478                           | 4.78                                                |
| 2014          | 214                                          | 3,607                                  | 1,049                           | 4.9                                                 |
| 2015          | 16                                           | 3,474                                  | 76                              | 4.75                                                |
| 2016          | 51                                           | 2,662                                  | 184                             | 3.61                                                |
| 2017          | 244                                          | 2,863                                  | 949                             | 3.89                                                |
| 2018          | 268                                          | 3,209                                  | 1,168                           | 4.36                                                |
| 2019          | 480                                          | 2,867                                  | 1,869                           | 3.89                                                |
| 2020          | 344                                          | 2,633                                  | 1,230                           | 3.58                                                |
| TOTAL         | 4,366                                        | 3,141                                  | 18,631                          | 4.27                                                |

AF = acre-feet

TDS = total dissolved solids

mg/L = milligrams per liter

# 13.5 Nutrient Management

# 13.5.1 Introduction

The principal nutrient of concern in the Livermore Valley is nitrate. The State MCL for nitrate (as nitrogen [N]) in drinking water is 10 mg/L, which is also the value used as the Basin Objective by the RWQCB and as the minimum threshold by Zone 7. Monitoring results for nutrients in the groundwater for the 2020 WY are reported in *Section 7.2.3*.

# 13.5.2 Nutrient Management Plan

In June 2015, Zone 7 adopted its NMP (*Zone 7, 2015b*), and by resolution, the RWQCB concurred with the findings and measures of the NMP in March 2016. The NMP assessed existing and projected future groundwater nutrient concentrations for planned recycled water expansion and future development in the Livermore Valley. The NMP concluded that although overall basin groundwater quality is not expected to degrade, there is still a need to monitor and manage nutrient loading. A description of the NMP is provided in *Section 5.3.4.1*, *NMP*, of the Alternative GSP.

The NMP outlined plans to minimize nitrogen loading from existing sources. The NMP also presented planned actions for addressing positive nutrient loads and high groundwater nitrate concentrations in localized Areas of Concern (AOCs) where onsite wastewater treatment systems (OWTS, e.g., septic systems) use is the typical method for sewage disposal (which can be a contributor to nitrate contamination). To minimize nitrogen loading, the NMP called for the continued use of BMPs for such facilities as horse boarding facilities, vineyards, irrigated turf/landscapes, and wineries. The NMP also recommended implementing additional OWTS performance measures for new and replacement OWTS in the AOCs (see *Section 13.5.3* below). The NMP included an implementation schedule that recognized the ongoing monitoring and BMPs and presented a specific schedule for AOC investigations. During the 2020 WY, Zone 7 continued working with ACDEH to implement the NMP measures.

# 13.5.3 OWTS Management

ACDEH administers the County OWTS Ordinance and is responsible for reviewing OWTS plans and issuing permits for the installation, repair, alteration, and operation of OWTS within Alameda County. In addition, Zone 7 Board approval is explicitly required for nonresidential uses of OWTS within the Upper Alameda Creek Watershed (Resolution 1165). See *Section 5.3.5, OWTS Management*, of the Alternative GSP for more information on Zone 7's role in managing OWTS densities within the Livermore Valley Groundwater Basin and watershed. One new authorization for nonresidential OWTS was granted by the Zone 7 Board in the 2020 WY for the Chouinard Vineyards and Winery on Palomares Road.



# TABLE 13-1 TOXIC SITES SURVEILLANCE - ACTIVE SITES SUMMARY 2020 WATER YEAR

| 7 ID | OWNER                                     | SITE NAME                 | ADDRESS          | CITY      | PRIORITY       | Y STATUS      | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                    |
|------|-------------------------------------------|---------------------------|------------------|-----------|----------------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Lawrence Livermore<br>National Laboratory | Lawrence Livermore<br>Lab | 7000 East Avenue | Livermore | 3A3            | 7             | ACEH           | SFRWQCB accepted the February 2019 Final Soils Screening and Management Plan, Lawrence Livermore National Laboratory and                                                                                                                                 |
|      |                                           |                           |                  | CI        | HEMICAL        | CONCENTRAT    | TION ug/L      | Site 300.                                                                                                                                                                                                                                                |
| GEOT | <b>TRACKER ID:</b> T0600                  | 191466                    |                  |           | TCE            | 610           |                |                                                                                                                                                                                                                                                          |
|      |                                           |                           |                  |           |                |               |                |                                                                                                                                                                                                                                                          |
|      |                                           |                           |                  |           |                |               |                |                                                                                                                                                                                                                                                          |
| 5    | Sandia National                           | Sandia National Labs      | 7011 East Avenue | Livermore | 3A3            | 8             | RWQCB          |                                                                                                                                                                                                                                                          |
| 5    | Sandia National<br>Laboratory             | Sandia National Labs      | 7011 East Avenue |           | 3A3<br>HEMICAL | 8  CONCENTRAT |                | Solid Waste Management Unit #16 in<br>December 2019 stating the closure report<br>adequately details the soil sampling activities                                                                                                                        |
|      | Laboratory                                |                           | 7011 East Avenue |           |                |               |                | Solid Waste Management Unit #16 in<br>December 2019 stating the closure report<br>adequately details the soil sampling activities<br>completed at the Site and indicatesthat no                                                                          |
|      |                                           |                           | 7011 East Avenue |           | HEMICAL        | CONCENTRAT    |                | Solid Waste Management Unit #16 in December 2019 stating the closure report adequately details the soil sampling activities completed at the Site and indicates that no significant release of contamination has occurred beneath the closed segments of |
|      | Laboratory                                |                           | 7011 East Avenue |           | HEMICAL TPHd   | CONCENTRAT    |                | December 2019 stating the closure report<br>adequately details the soil sampling activities<br>completed at the Site and indicatesthat no<br>significant release of contamination has                                                                    |

3/10/2021 Table 13-1; Page 1 of 27

| Z7 ID | OWNER                  | SITE NAME                              | ADDRESS                 | CITY      | PRIORIT  | Y STATUS  | LEAD<br>AGENCY | NOTES                                                                                         |
|-------|------------------------|----------------------------------------|-------------------------|-----------|----------|-----------|----------------|-----------------------------------------------------------------------------------------------|
| 11    | Intel                  | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore | 2A3      | 8         | RWQCB          | The 2019 Annual Monitoring and Technical Report was approved by RWQCB.                        |
|       |                        |                                        |                         |           | CHEMICAL | CONCENTRA | TION ug/L      |                                                                                               |
| GFOT  | T <b>racker id:</b> Si | 18368788                               |                         |           | TCE      | 100       |                |                                                                                               |
| GLOI  | KACKER ID. 3           | 10300700                               |                         |           | 1,2-DCE  | 120       |                |                                                                                               |
|       |                        |                                        |                         |           | VC       | 71        |                |                                                                                               |
|       |                        |                                        |                         |           | PCE      | 5.9       |                |                                                                                               |
|       |                        |                                        |                         |           |          |           |                |                                                                                               |
| 11    | Intel                  | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore | 2A3      | 8         | RWQCB          | The Regional Water Board's directive letter dated August 23, 2019, required that Intel        |
|       |                        |                                        |                         |           | CHEMICAL | CONCENTRA | TION ug/L      | Corporation (Intel) submit a report addressing outstanding concerns of residual contamination |
| CEOT  | T <b>racker id:</b> Si | 19269799                               |                         |           | TCE      | 100       |                | and risk at the Site.                                                                         |
| GEOI  | KACKEK ID: 31          | _10300700                              |                         |           | 1,2-DCE  | 120       |                |                                                                                               |
|       |                        |                                        |                         |           | VC       | 71        |                |                                                                                               |
|       |                        |                                        |                         |           | PCE      | 5.9       |                |                                                                                               |
|       |                        |                                        |                         |           |          |           |                |                                                                                               |
| 11    | Intel                  | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore | 2A3      | 8         | RWQCB          | The February 2020 Water Board response to the Intel November 25th report commented            |
|       |                        |                                        |                         |           | CHEMICAL | CONCENTRA | TION ug/L      | that the sump pump in Building 3 provides hydraulic control of the groundwater VOC            |
| GEOT  | T <b>racker id:</b> Si | 18368788                               |                         |           | TCE      | 100       |                | plume at the Intel site.                                                                      |
| JEUI  | MICHER ID. O           | 10000700                               |                         |           | 1,2-DCE  | 120       |                |                                                                                               |
|       |                        |                                        |                         |           | VC       | 71        |                |                                                                                               |
|       |                        |                                        |                         |           | PCE      | 5.9       |                |                                                                                               |
|       |                        |                                        |                         |           |          |           |                |                                                                                               |
|       |                        |                                        |                         |           |          |           |                |                                                                                               |

3/10/2021 Table 13-1; Page 2 of 27

|      | OWNER             | SITE NAME                              | ADDRESS                 | CITY      | PRIORITY        | STATUS        | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                          |
|------|-------------------|----------------------------------------|-------------------------|-----------|-----------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11   | Intel             | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore | 2A3             | 8             | RWQCB          | 1/3 The Water Board responded to the January                                                                                                                                                                                   |
|      |                   |                                        | . 1044                  | _(        | CHEMICAL        | CONCENTRAT    | TION ug/L      | 2020 Mine's Road report. No decisions on site closure will be made until the RMP is                                                                                                                                            |
| GEO' | TRACKER ID: SL183 | 368788                                 |                         |           | TCE             | 100           |                | submitted and approved and vapor intruction guidance is published. The Water Board                                                                                                                                             |
| GLO. | RACKER ID. SEIO   | 300700                                 |                         |           | 1,2-DCE         | 120           |                | response asserted that further remediation is feasible at the Site and requests Intel's                                                                                                                                        |
|      |                   |                                        |                         |           | VC              | 71            |                | evaluation of six specific technologies for the                                                                                                                                                                                |
|      |                   |                                        |                         |           | PCE             | 5.9           |                | Site. The Response requested that Intel provide more specific estimated cleanup times                                                                                                                                          |
| 11   | Intel             | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore | 2A3<br>CHEMICAL | 8  CONCENTRAT | RWQCB          | 2/3 The Water Board commented that groundwate in the Site area is not likely to be used as                                                                                                                                     |
|      |                   |                                        |                         |           |                 | CONCENTRAL    | HON ug/L       | source of drinking water because the low                                                                                                                                                                                       |
| GEO' | TRACKER ID: SI 18 | 368788                                 |                         |           | TCE             | 100           | HON ug/L       | permeability soils restrict water production prohibiting beneficial well yields and                                                                                                                                            |
| GEO: | TRACKER ID: SL183 | 368788                                 |                         | _         | TCE<br>1,2-DCE  |               | HON ug/L       | permeability soils restrict water production<br>prohibiting beneficial well yields and<br>determined that no additional time estimate is                                                                                       |
| GEO: | TRACKER ID: SL18. | 368788                                 |                         | _         | -               | 100           | HON ug/L       | permeability soils restrict water production<br>prohibiting beneficial well yields and<br>determined that no additional time estimate is<br>needed. The Response discussed concerns<br>regarding potential vinyl chloride (VC) |
| GEO' | TRACKER ID: SL18  | 368788                                 |                         | _         | 1,2-DCE         | 100<br>120    | HON ug/L       | permeability soils restrict water production<br>prohibiting beneficial well yields and<br>determined that no additional time estimate<br>needed. The Response discussed concerns                                               |

| 11  | Intel             | Intel Livermore<br>Fabrication Plant 3 | 250 North Mines<br>Road | Livermore        | 2A3     | 8         | RWQCB     | 3/3 The Water Boord response requested that Intel                                            |
|-----|-------------------|----------------------------------------|-------------------------|------------------|---------|-----------|-----------|----------------------------------------------------------------------------------------------|
|     |                   |                                        |                         | $\boldsymbol{C}$ | HEMICAL | CONCENTRA | TION ug/L | provide an updated risk assessment. Because groundwater contamination has been shown to      |
| GFO | TRACKER ID: SL183 | 68788                                  |                         |                  | TCE     | 100       |           | be stable or decreasing, the Water Board determined that it is unlikely that the risk due to |
| OLO | TRACKER ID. SE103 | 00700                                  |                         |                  | 1,2-DCE | 120       |           | groundwater exposure has increased since the 2005 risk assessment.                           |
|     |                   |                                        |                         |                  | VC      | 71        |           | 2000 Hok dosessiment.                                                                        |
|     |                   |                                        |                         |                  | PCE     | 5.9       |           |                                                                                              |
|     |                   |                                        |                         |                  |         |           |           |                                                                                              |
|     |                   |                                        |                         |                  |         |           |           |                                                                                              |

3/10/2021 Table 13-1; Page 3 of 27

| Z7 ID | OWNER                     | SITE NAME                            | ADDRESS                 | CITY       | PRIORITY       | STATUS         | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                               |
|-------|---------------------------|--------------------------------------|-------------------------|------------|----------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14    | Nucleopore<br>Corporation | Former Clorox<br>Campus - Building 9 | 7035 Commerce<br>Circle | Pleasanton | 2A2            | 7              | RWQCB          | Verification Monitoring and Rquiest for Closure<br>Report was submitted to the RWQC in August                                                                                                                                                                       |
|       |                           |                                      |                         | CI         | HEMICAL        | CONCENTRAT     | TON ug/L       | 2020. Groundwater analytical results were presented for December 2019, March 2020,                                                                                                                                                                                  |
| GEOT  | TRACKER ID: T060          | 00191468                             |                         |            | Freon 113      |                |                | and June 2020. TCE concentrations above th MCL were detected in six wells, PCE concentrations above the MCL of were detected in three wells, and cDCE concentrations above the MCL were dectected in one well. Freon was also detected above the MCL.               |
| 14    | Nucleopore<br>Corporation | Former Clorox<br>Campus - Building 9 | 7035 Commerce<br>Circle | Pleasanton | 2A2<br>HEMICAL | 7 CONCENTRAT   | RWQCB          | Soil vapor analytical results were also presented for one sampling event prior to SVE shutdown on October 2018 and 9 subseqent                                                                                                                                      |
|       |                           |                                      |                         |            | Freon 113      | CONCENTRAL     | TOW ug/L       | rebound events through June 2020. PCE was detected in the first 5 of 9 rebound testing events.                                                                                                                                                                      |
| GEO   | TRACKER ID: T060          | J0191408                             |                         |            |                |                |                | Natual attenuation is presented by Rosso Environmental in the concludsions as appropriate final remedial measure for shallow groundwater contaminated with chlorinated VOCs.                                                                                        |
|       |                           |                                      |                         |            |                |                |                |                                                                                                                                                                                                                                                                     |
| 36    | Richmond Lox/<br>Salinas  | Salinas Reinforcing Inc.             | 355 South Vasco<br>Road | Livermore  | 3A3            | 5C             | RWQCB          |                                                                                                                                                                                                                                                                     |
| 36    |                           | Salinas Reinforcing Inc.             |                         |            | 3A3<br>HEMICAL | 5C  CONCENTRAT |                | Investigation and Annual Site Status Report to provide updated deeper zone groundwater an soil gas volatile organic compound (VOC) data                                                                                                                             |
|       | Salinas<br>Reinforcement  | Ů                                    |                         |            |                |                |                | In December 2019, Montclair submitted the Investigation and Annual Site Status Report to provide updated deeper zone groundwater and soil gas volatile organic compound (VOC) data for the southern area of the Site for determining whether VOC concentrations are |
|       | Salinas                   | Ů                                    |                         |            | HEMICAL        | CONCENTRAT     |                | Investigation and Annual Site Status Report to<br>provide updated deeper zone groundwater an<br>soil gas volatile organic compound (VOC) data<br>for the southern area of the Site for                                                                              |

3/10/2021 Table 13-1; Page 4 of 27

| Z7 ID | OWNER                                  | SITE NAME                | ADDRESS                       | CITY       | PRIORIT      | Y STATUS   | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                        |
|-------|----------------------------------------|--------------------------|-------------------------------|------------|--------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36    | Richmond Lox/<br>Salinas               | Salinas Reinforcing Inc. | 355 South Vasco<br>Road       | Livermore  | 3A3          | 5C         | RWQCB          | SFBRWQCB responded to the closure evaluation and workplan in March 2020                                                                                                                                      |
|       | Reinforcement                          |                          |                               |            | CHEMICAL     | CONCENTRAT | TON ug/L       | requiring further investigation to confirm if the railroad spur area is a possible additional TCE                                                                                                            |
| CEO   | T <b>RACKER ID:</b> SL1826             | 44407                    |                               | _          | TCE          | 770        |                | spill source location, demonstration of temporal concentration decline of TCE with                                                                                                                           |
| GEUI  | TRACKER ID: 3L1020                     | 30007                    |                               |            | TPHg         | NA         |                | repeatable data from fixed monitoring locations, assement of additional TCE source                                                                                                                           |
|       |                                        |                          |                               |            | BENZ         | NA         |                | and determination of the full vertical and lateral downgradient extent of TCE groundwater contamination. In addition, they required remedial and mitigation meausre to control sources. Workplan is pending. |
| 37    | Applied Biosystems<br>(formerly Kaiser | Applied Biosystems       | 6001 (Formerly<br>6177) Sunol | Pleasanto  | n 2C         | 8          | DTSC           | Closure of Groundwater Monitoring Well GEI-<br>2S Work Plan was implemented in November                                                                                                                      |
|       | Àluminum &<br>Chemical)                |                          | Boulevard                     |            | CHEMICAL     | CONCENTRAT | TON ug/L       | 2019 under Zone 7 permit 2019039. Annual certification for the Covenant to Restrict Use of                                                                                                                   |
| CEO   | TRACKER ID: 012800                     | 250                      |                               |            | PCE          | 22         |                | Property was submitted in January, 2020.                                                                                                                                                                     |
| GEUI  | TRACKER ID: 012000                     | J30                      |                               |            | TCE          | 0.59       |                |                                                                                                                                                                                                              |
|       |                                        |                          |                               |            | 1,1-DCE      | 9.8        |                |                                                                                                                                                                                                              |
| 84    | Livermore                              | Arrow Rentals            | 187 North L Street            | Livermore  | 1A2          | 7          | ACEH           | The Soil Vapor Well Installation Report was                                                                                                                                                                  |
| 04    | Redevelopment                          | Allow Remais             | 107 NOTH L SHEET              | Liverinore | IAZ          | ľ          | ACLIT          | submitted in August 2020. Vapor was sample for TPH, VOCs, and methane. Analytical                                                                                                                            |
|       | Agency                                 |                          |                               |            | CHEMICAL     | CONCENTRAT | TON ug/L       | results reported TPHg, Toluene, Ethanol,                                                                                                                                                                     |
|       |                                        | 10011                    |                               |            | TPHg         | 9,200      |                | Acetone, 2-proponal, and PCE in some samples. This report concludes that results                                                                                                                             |
| GEO I | <b>TRACKER ID:</b> T0600               | 100116                   |                               |            |              |            |                | meet the Petroleum Vapor Intrusion to Indo                                                                                                                                                                   |
| GEO   | <b>TRACKER ID:</b> T0600               | 100116                   |                               |            | TPHd         | NA         |                | Air criteria of the State Water Resources                                                                                                                                                                    |
| GEO1  | TRACKER ID: T0600                      | 100116                   |                               |            | TPHd<br>MTBE | NA<br>48   |                |                                                                                                                                                                                                              |

3/10/2021 Table 13-1; Page 5 of 27

| Z7 ID | OWNER                           | SITE NAME                              | ADDRESS                   | CITY      | PRIORITY    | STATUS     | LEAD<br>AGENCY | NOTES                                                                                     |
|-------|---------------------------------|----------------------------------------|---------------------------|-----------|-------------|------------|----------------|-------------------------------------------------------------------------------------------|
| 84    | Livermore<br>Redevelopment      | Arrow Rentals                          | 187 North L Street        | Livermore | 1A2         | 7          | ACEH           | Ground Zero submitted the Well Destruction and Installation Report to ACDEH in December   |
|       | Agency                          |                                        |                           |           | CHEMICAL    | CONCENTRA  | TION ug/L      | 2019. A total of 8 soil samples from 3 borings were collected and analyzed for TPHg,      |
| CEOT  | <b>TRACKER ID:</b> T0600        | 7100116                                |                           |           | TPHg        | 9,200      |                | benzene, BTEX, and MTBE using EPA Method<br>8260B and LUFT GC/MS. TPHg was detected       |
| GEOI  | RACKER ID. 10000                | 3100110                                |                           |           | TPHd        | NA         |                | in one sample. Three of the 5 new wells were dry and therefore unable to be developed for |
|       |                                 |                                        |                           |           | MTBE        | 48         |                | the subsequent monitoring.                                                                |
|       |                                 |                                        |                           |           | BENZ        | 3,000      |                |                                                                                           |
| 84    | Livermore                       | Arrow Rentals                          | 187 North L Street        | Livermore | 1A2         | 7          | ACEH           | An Additional Soil Gas Invetigation Workplan                                              |
|       | Redevelopment<br>Agency         |                                        |                           |           |             |            |                | was submitted in October 2019 for additional data to estimate the potential risk of vapor |
|       | <b>3</b>                        |                                        |                           | _         | CHEMICAL    | CONCENTRAT | TION ug/L      | intrusion. Ground Zero proposed the installation of soil gas wells and performing tw      |
| GEOT  | TRACKER ID: T0600               | 0100116                                |                           |           | TPHg        | 9,200      |                | soil gas sampling events to coincide with late                                            |
|       |                                 |                                        |                           |           | TPHd        | NA         |                | fall and early winter.                                                                    |
|       |                                 |                                        |                           |           | MTBE        | 48         |                |                                                                                           |
|       |                                 |                                        |                           |           | BENZ        | 3,000      |                |                                                                                           |
| 115   | LASC/MOSC<br>(Livermore Arcade) | Livermore Arcade<br>(Miller's Outpost) | 1410/1554 First<br>Street | Livermore | 1A2         | 7          | RWQCB          | In October 2019, the Semi-Annual Goundwate Monitoring Report was submitted for the first  |
|       |                                 |                                        |                           |           | CHEMICAL    | CONCENTRA  | TION ug/L      | and second quarter of 2019. PCE, TCE, Cis-<br>1,2-DCE, Vinyl Chloide, were detected in    |
| CEO   | T <b>racker Id:</b> SL182       | 227425                                 |                           |           | PCE         | 14         |                | shallow and deep zone wells above reporting limits. According to APEX, PCE concentration  |
| GEUI  | TACKER ID: SLIB                 | 227020                                 |                           |           | TCE         | 3.9        |                | in the LASC and MOSC source areas have decreased.                                         |
|       |                                 |                                        |                           |           | cis-1,2-DCE | 6.9        |                | uccieascu.                                                                                |
|       |                                 |                                        |                           |           |             |            |                |                                                                                           |

3/10/2021 Table 13-1; Page 6 of 27

| Z7 ID | OWNER                      | SITE NAME                    | ADDRESS             | CITY      | PRIORIT   | Y STATUS  | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                   |
|-------|----------------------------|------------------------------|---------------------|-----------|-----------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137   | Busick Air<br>Conditioning | Busick Gearing<br>Properties | 6341 Scarlett Court | Dublin    | 2A3       | 5C        | RWQCB          | RWQCB issued a directive letter on October 15, 2019 requiring a technical report for the                                                                                                                                                                |
|       |                            |                              |                     |           | CHEMICAL  | CONCENTRA | TION ug/L      | vapor intrusion assessment and groundwater investigation at the site, in addition to the                                                                                                                                                                |
| GEOT  | T <b>racker Id:</b> SL20   | 256874                       |                     | _         | TCE       | 5,200     |                | implementation of the remedial investigation workplan dated March 12, 2014. The technica                                                                                                                                                                |
| GLOI  | TRICKER ID. SLEE           | 250074                       |                     |           | PCE       | 120       |                | report was due February 24,2020.                                                                                                                                                                                                                        |
| 149   | Kaiser Sand and            | Hanson Aggregates            | 3000 Busch Road     | Pleasan   | ton 2A4   | 5R        | ACEH           | ACDEH concurred with USL Pleasanton's                                                                                                                                                                                                                   |
| 149   | Gravel                     | Hanson Aggregates            | 3000 Busch Road     | i ieasaii | 1011 2/14 | SIX       | ACLII          | request for case closure of SCP Case No. RO0002941 and RO0002952. Remedial Actio                                                                                                                                                                        |
|       |                            |                              |                     | _         | CHEMICAL  | CONCENTRA | TION ug/L      | Plans were required to be submitted to ACDE for review and approval to address the site's                                                                                                                                                               |
| GEO1  | TRACKER ID: SLT1           | 9719376                      |                     |           | BENZ      | ND        |                | remaining environmental concerns and will be conducted under two new SCP cases                                                                                                                                                                          |
|       |                            |                              |                     |           | TPHd      | 50        |                | (RO0003458 and RO0003459), in conjunction with the site's future development activities. Well and probe destruction, and disposal of investigation and remediation derived waste are required for issuance of a Remedial Action Completion Certificate. |
| 149   | Kaiser Sand and<br>Gravel  | Hanson Aggregates            | 3000 Busch Road     | Pleasan   | ton 2A4   | 5R        | ACEH           | SLT19719376 and SL0600101555 (AOCs 2 through 9) are eligible for closure as of                                                                                                                                                                          |
|       |                            |                              |                     |           | CHEMICAL  | CONCENTRA | TION ug/L      | 9/18/2020. T10000009398 (AOC 6 and 7) is open for long term management as of                                                                                                                                                                            |
| GFOT  | TRACKER ID: SLT1           | 9719376                      |                     | _         | BENZ      | ND        |                | 7/18/2017.                                                                                                                                                                                                                                              |
| JEUI  | MICKER ID. SLII            | 77 17370                     |                     |           | TPHd      | 50        |                |                                                                                                                                                                                                                                                         |
|       |                            |                              |                     |           |           |           |                |                                                                                                                                                                                                                                                         |

3/10/2021 Table 13-1; Page 7 of 27

| Z7 ID        | OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SITE NAME      | ADDRESS                | CITY   | PRIORITY    | Y STATUS     | LEAD<br>AGENCY | NOTES                                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--------|-------------|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 209          | Shell Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHELL #13-5244 | 8999 San Ramon<br>Road | Dublin | 2C          | 8            | ACEH           | RP submitted the Additional Site Assessment and Update to the Conceptual Model to                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | CHEMICAL    | CONCENTRA    | TION ug/L      | ACDEH for additional testing performed in 2019. Additional sampling included one soil                                                                                            |
| CEOT         | T <b>racker Id:</b> Tob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400150707      |                        | -      | TPHd        | 1,300        |                | sample and 3 goundwater samples. MTBE and TBA were detected in the soil sample. No                                                                                               |
| GEUI         | KACKER ID: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300139797      |                        |        | TPHg        | 220          |                | COCs were detected above reporting limits in the groundwater samples. The report                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | TBA         | 5,000        |                | concludes MTBE in the intermediate zone to                                                                                                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | MTBE        | 130          |                | be adequately defined and groundwaterr in the<br>deep zone defined to water quality objectives<br>in the predominantly downgradient direction.<br>Wayne Perry requested closure. |
| 209          | Shell Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHELL #13-5244 | 8999 San Ramon         | Dublin | 2C          | 8            | ACEH           | In June 2020, ACDEH concurred that the Case                                                                                                                                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Road                   |        | CHEMICAL    | CONCENTED    | THOM IT        | meets the criteria presented in the LTCP and is<br>therefore eligible for regulatory case closure                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        | -      | CHEMICAL    | CONCENTRA    | IION ug/L      | pursuant to California Health and Safety Code (H&SC) Section 25296.10. ACDEH updated                                                                                             |
| <b>GEO</b> 1 | <b>TRACKER ID:</b> TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600159797      |                        |        | TPHd        | 1,300        |                | the Low Threat Policy Checklist and the Path<br>to Closure Plan in the Case file on the State                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | TPHg<br>TBA | 220<br>5,000 |                | Water Board's GeoTracker Database to reflect their evaluation and has assigned the Case a                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | MTBE        | 130          |                | status of "Open - Eligible for Closure".                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        |             |              |                |                                                                                                                                                                                  |
| 209          | Shell Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHELL #13-5244 | 8999 San Ramon<br>Road | Dublin | 2C          | 8            | ACEH           | A Well Abandonment Workpan was submitted to ACDEH in August, 2020. This plan was                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        | _      | CHEMICAL    | CONCENTRA    | TION ug/L      | approved in October 2020.                                                                                                                                                        |
| GEOT         | <b>TRACKER ID:</b> TOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500159797      |                        |        | TPHd        | 1,300        | _              |                                                                                                                                                                                  |
| 3231         | THE TOTAL TO |                |                        |        | TPHg        | 220          |                |                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | TBA         | 5,000        |                |                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |        | MTBE        | 130          |                |                                                                                                                                                                                  |

3/10/2021 Table 13-1; Page 8 of 27

| ell Oil  CKER ID: T06001  rdoni Ranch LLC d Green Valley rporation nancy in Common | SHELL #13-5244 59797  Groth Brothers Chevrolet | 8999 San Ramon<br>Road<br>59 South L Street | Dublin   | 2C  CHEMICAL  TPHd  TPHg  TBA  MTBE | 8  CONCENTRAT  1,300 220 5,000 130       |                                                                                     | Eligible for closure as of 6/29/2020.                                                      |
|------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|----------|-------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| rdoni Ranch LLC<br>d Green Valley<br>rporation                                     | Groth Brothers                                 | 59 South L Street                           | Livermo  | TPHd<br>TPHg<br>TBA<br>MTBE         | 1,300<br>220<br>5,000<br>130             |                                                                                     |                                                                                            |
| rdoni Ranch LLC<br>d Green Valley<br>rporation                                     | Groth Brothers                                 | 59 South L Street                           | Livermo  | TPHg<br>TBA<br>MTBE                 | 220<br>5,000<br>130                      |                                                                                     |                                                                                            |
| rdoni Ranch LLC<br>d Green Valley<br>rporation                                     | Groth Brothers                                 | 59 South L Street                           | Livermo  | TBA<br>MTBE                         | 5,000<br>130                             |                                                                                     |                                                                                            |
| d Green Valley rporation                                                           |                                                | 59 South L Street                           | Livermoi | МТВЕ                                | 130                                      |                                                                                     |                                                                                            |
| d Green Valley rporation                                                           |                                                | 59 South L Street                           | Livermo  |                                     |                                          |                                                                                     |                                                                                            |
| d Green Valley rporation                                                           |                                                | 59 South L Street                           | Livermo  | e 2A2                               |                                          |                                                                                     |                                                                                            |
| d Green Valley rporation                                                           |                                                | 59 South L Street                           | Livermo  | e 2A2                               |                                          |                                                                                     |                                                                                            |
| rporation                                                                          |                                                |                                             |          |                                     | 5R                                       | RWQCB                                                                               | The Revised Vapor Intrusion Mitigation System Design Report was submitted on November      |
| ,                                                                                  |                                                |                                             |          | CHEMICAL                            | CONCENTRAT                               | TION ug/L                                                                           | 1st, 2019.                                                                                 |
| <b>CKER ID:</b> SL0600                                                             | 1.47001                                        |                                             | _        | BENZ                                | 46                                       |                                                                                     |                                                                                            |
| KEK 1D: 310000                                                                     | 147001                                         |                                             |          | MTBE                                | 1,200                                    |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          | TPHg                                | 61,000                                   |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          | PCE                                 | 3000                                     |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          |                                     |                                          |                                                                                     |                                                                                            |
| Rents                                                                              | All Rents                                      | 2247 Second Street                          | Livermo  | re 1A2                              | 5C                                       | UNK                                                                                 | A source investigation workplan was due July 20, 2018. An extension was discussed in Apr   |
|                                                                                    |                                                |                                             |          | CHEMICAL                            | CONCENTRAT                               | TION ug/L                                                                           | 2019.                                                                                      |
| <b>CKED ID.</b> T10000                                                             | 1008261                                        |                                             | _        | 1,2-DCE                             | 14                                       |                                                                                     |                                                                                            |
| KEK ID: 110000                                                                     | 000201                                         |                                             |          | TCE                                 | 250                                      |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          | PCE                                 | 430                                      |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          |                                     |                                          |                                                                                     |                                                                                            |
|                                                                                    |                                                |                                             |          |                                     |                                          |                                                                                     |                                                                                            |
|                                                                                    |                                                | ents All Rents <b>KER ID:</b> T10000008261  |          | -                                   | CHEMICAL           1,2-DCE           TCE | CHEMICAL         CONCENTRATE           1,2-DCE         14           TCE         250 | CHEMICAL         CONCENTRATION ug/L           1,2-DCE         14           TCE         250 |

3/10/2021 Table 13-1; Page 9 of 27

| Z7 ID | OWNER                         | SITE NAME                                        | ADDRESS                   | CITY       | PRIORITY | STATUS     | LEAD<br>AGENCY | NOTES                                                                                                                                      |
|-------|-------------------------------|--------------------------------------------------|---------------------------|------------|----------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 242   | Alameda County<br>Fairgrounds | Fairground Main Well<br>(3S/1E 20B 2)            | 4501 Pleasanton<br>Avenue | Pleasantor | n 1A1    | 1          |                | American Cleaners (T10000008240) has been identified as a potential source of the                                                          |
|       |                               |                                                  |                           |            | CHEMICAL | CONCENTRAT | ION ug/L       | contamination of the fairgroud well. Zone 7 provided fairground well logs and contact                                                      |
| GEOT  | FRACKER ID:                   |                                                  |                           |            | PCE      | 16         |                | information to the RP.                                                                                                                     |
| 259   | City of Livermore             | CHEVRON #30-7233<br>/Mills Square                | 2259 First Street         | Livermore  | 2A4      | 7          | ACEH           | The Final Supplemental Remedial Action Implementaion Plan (RAIP) was submitted in                                                          |
|       |                               | Park/Performing Arts<br>Theater                  |                           |            | CHEMICAL | CONCENTRAT | ION ug/L       | September 2020. The plan proposed excavation in Areas 1, 2, and 3. ACDEH                                                                   |
| CEOI  | <b>"RACKER ID:</b> T0600      | 0104400                                          |                           |            | TPHg     | 3000       |                | approved the plan with additional requirement to collect soil samples above and bleow                                                      |
| GEUI  | RACKER ID: 10600              | 1190022                                          |                           |            | BENZ     | 0.5        |                | potentially impacted intervals when advancing soil borings in Area 3. Samples will be                                                      |
|       |                               |                                                  |                           |            | TPHd     | 140        |                | analyzed for TPHg, TPHd, TPHmo and BTEX                                                                                                    |
|       | City of Livermore             | CHEVRON #30-7233                                 | 2259 First Street         | Livermore  | 2A4      | 7          | ACEH           | In May 2020, ACDEH concluded anaerobic                                                                                                     |
| 259   |                               | /Milla Carrara                                   |                           |            |          |            |                | biological oxidation had not been completely                                                                                               |
| 259   |                               | /Mills Square<br>Park/Performing Arts<br>Theater |                           |            | CHEMICAL | CONCENTRAT | ION ug/L       | effective in removing TPH in groundwater and                                                                                               |
|       | TRACKER IN. TOACO             | Park/Performing Arts<br>Theater                  |                           |            | TPHg     | CONCENTRAT | ION ug/L       | effective in removing TPH in groundwater and                                                                                               |
|       | <b>TRACKER ID:</b> T0600      | Park/Performing Arts<br>Theater                  |                           |            |          |            | ION ug/L       | effective in removing TPH in groundwater and<br>required additional secondary source removal<br>beneath the site via one of the four other |

3/10/2021 Table 13-1; Page 10 of 27

| Z7 ID | OWNER                          | SITE NAME                         | ADDRESS                           | CITY      | PRIORITY | ' STATUS   | LEAD<br>AGENCY | NOTES                                                                              |  |
|-------|--------------------------------|-----------------------------------|-----------------------------------|-----------|----------|------------|----------------|------------------------------------------------------------------------------------|--|
| 264   | Livermore<br>Redevelopment     | Railroad Ave-<br>Livermore Site   | 1934 - 1950<br>Railroad Avenue at | Livermore | e 2A4    | 1          | ACEH           | This case has been inactive since 2005. ACEH transferred this case to the Regional |  |
|       | Agency/Signature<br>Properties |                                   | North L Street                    |           | CHEMICAL | CONCENTRAT | ION ug/L       | Water Board. No documents have been added to geotracker since the 2005 Sample and  |  |
| CEO   | TRACKER ID: T060               | 10726132                          |                                   |           | MTBE     | 280        | _              | Analysis Plan was uploaded. There was no activity in the 2020 WY.                  |  |
| GLOI  | TRACKER ID. 1000               | 17720132                          |                                   |           | BENZ     | 130        |                |                                                                                    |  |
|       |                                |                                   |                                   |           | TPHg     | 1,200      |                |                                                                                    |  |
|       |                                |                                   |                                   |           | PCE      | 30         |                |                                                                                    |  |
| 284   | Gabriel Chiu                   | Former Crow Canyon<br>Dry Cleaner | 7272 or 7242 San<br>Ramon Road    | Dublin    | 3C       | 8          | ACEH           | A Data Gap Evaluation, Work Plan, Site<br>Conceptual Model, and Interim Risk       |  |
|       |                                |                                   |                                   |           | CHEMICAL | CONCENTRAT | ION ug/L       | Management Plan were due May 2020.                                                 |  |
| CEO   | <b>TRACKER ID:</b> T060        | 10764794                          |                                   | _         | TCE      | 3          |                |                                                                                    |  |
| GLO   | TRICKER ID. 1000               | 17704704                          |                                   |           | PCE      | 22         |                |                                                                                    |  |
| 291   | Country Club                   | Perciva/Metro Valley              | 224 Rickenbacker                  | Livermore | e 3A2    | 7          | ACEH           | 6/28/2020 - RP proposed to perform a soil                                          |  |
|       | Cleaners                       | Cleaners                          | Circle                            |           |          |            |                | vapor survey to evaluate the potential subsurface vapor and/or indoor intrusion    |  |
|       |                                |                                   |                                   |           | CHEMICAL | CONCENTRAT | ION ug/L       | pathways and identity if there are any human                                       |  |
|       |                                |                                   |                                   | _         | PCE      | 4.9        |                | health and/or environmental risks to the onsite                                    |  |

3/10/2021 Table 13-1; Page 11 of 27

| Z7 ID                              | OWNER                    | SITE NAME                        | ADDRESS                    | CITY      | PRIORITY | STATUS     | LEAD<br>AGENCY                                                                                                                                                                                                                                                                                                                                                                         | NOTES                                                                                                                                                                                                                                                             |
|------------------------------------|--------------------------|----------------------------------|----------------------------|-----------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 291                                | Country Club<br>Cleaners | Perciva/Metro Valley<br>Cleaners | 224 Rickenbacker<br>Circle | Livermore | 3A2      | 7          | ACEH                                                                                                                                                                                                                                                                                                                                                                                   | 9/20/2020 - RP submitted a Site<br>Assemessment Report, the Passive Soil Gas                                                                                                                                                                                      |
|                                    |                          |                                  |                            | _ (       | CHEMICAL | CONCENTRAT | TION ug/L                                                                                                                                                                                                                                                                                                                                                                              | Sampling Technical Memorandum to present the quantitative mass and soil gas analytical                                                                                                                                                                            |
| <b>GEOTRACKER ID:</b> T06019748481 |                          |                                  |                            | PCE       | 4.9      |            | results from the August 28 to September 1, 2020 sampling events. Chlorinated solvents, primarily consisting of PCE, TCE, t-1,2-DCE, and c-1,2-DCE, were detected within the footprint of the former dry cleaning machine along the south side of the onsite building. RP proposed to install the additional PSG samplers to provide further lateral delineation of the onsite impacts. |                                                                                                                                                                                                                                                                   |
| 292<br>GEOT                        | CW Roen  FRACKER ID: TOE | Former K&S Heavy<br>Equipment    | 495 Greenville Road        | Livermore | 2C       | 8          | ACEH                                                                                                                                                                                                                                                                                                                                                                                   | ACDEH review of Site Characterization report required a workplan to address data gaps associated with historical remedial excavations and the evaluation of pesticides and herbicides. The Site Investigation Work Plan was subsequently submitted on 11/30/2019. |
| 292                                | CW Roen                  | Former K&S Heavy<br>Equipment    | 495 Greenville Road        | Livermore | 2C       | 8          | ACEH                                                                                                                                                                                                                                                                                                                                                                                   | A Subsurface Investigation Report was submitted in May 2020. Soil samples were collected at depths from 5 to 15 feet below ground surface and sampled for TPH, VOCs,                                                                                              |
| GEOT                               | TRACKER ID: TOG          | 5019726510                       |                            |           |          |            |                                                                                                                                                                                                                                                                                                                                                                                        | SVOCs, and metals. Metals and VOCs were detected below ESLs.                                                                                                                                                                                                      |

3/10/2021 Table 13-1; Page 12 of 27

| Z7 ID | OWNER                 | SITE NAME                          | ADDRESS             | CITY     | PRIORIT     | Y STATUS  | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                      |  |
|-------|-----------------------|------------------------------------|---------------------|----------|-------------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 292   | CW Roen               | Former K&S Heavy<br>Equipment      | 495 Greenville Road | Livermor | re 2C       | 8         | ACEH           | Subsurface Investigation Report, Revision 1 reccomended no further investigation based no residual contaminant mass found beneath the extent of the historic excavation, and no organochlorine pesticides. |  |
| GEOT  | <b>RACKER ID:</b> TO  | 6019726510                         |                     |          |             |           |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
| 292   | CW Roen               | Former K&S Heavy<br>Equipment      | 495 Greenville Road | Livermor | re 2C       | 8         | ACEH           | Eligible for closure as of 3/3/2020.                                                                                                                                                                       |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
| GEOT  | <b>RACKER ID:</b> TO  | 6019726510                         |                     |          |             |           |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
| 298   | Chevron               | Former Chevron<br>Records Facility | 6400 Sierra Court   | Dublin   | 2B4         | 7         | RWQCB          | SWRCB issued a letter approving the request by the RP to have the review of site clean up                                                                                                                  |  |
|       |                       | ,                                  |                     | _        | CHEMICAL    | CONCENTRA | TION ug/L      | requirements to continue to be held in abeyance until 12/23/2021. The original request for the petition to be held in abeyance expired 12/23/19.                                                           |  |
| GEOT  | <b>RACKER ID:</b> SLO | 0600196603                         |                     |          | TCE         | 690       |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          | cis 1,2-DCE | 1200      |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          | VC          | 20        |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |
|       |                       |                                    |                     |          |             |           |                |                                                                                                                                                                                                            |  |

3/10/2021 Table 13-1; Page 13 of 27

| assessment were due May 2010. ACDEH issued notice of violation letters in 2009 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 ID | OWNER                              | SITE NAME                                 | ADDRESS             | CITY      | PRIORIT  | Y STATUS   | LEAD<br>AGENCY | NOTES                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|-------------------------------------------|---------------------|-----------|----------|------------|----------------|------------------------------------------------------------------------------------|
| GEOTRACKER ID: SLT19745274  GRO unknown  GRO | 299  | TDW Construction                   | Nica Metals                               | 101 Greenville Road | Livermore | e 3A2    | 3A         | ACEH           | Site is non-compliant. Soil removal and a site assessment were due May 2010. ACDEH |
| 302 Federal Corrections Institution Dublin Institution Dublin STO1 8th Street Dublin STO1 8th Street CHEMICAL CONCENTRATION ug/L  307 City of Pleasanton Public Works Theater Parking Lot Theater Parking Lot TPHg  308 City of Pleasanton City of Pleasanton Theater Parking Lot TPHg  309 City of Pleasanton Theater Parking Lot TPHg  309 City of Pleasanton Theater Parking Lot TPHg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                    |                                           |                     |           | CHEMICAL | CONCENTRAT | TION ug/L      | 2010. There was no change in status for this                                       |
| Institution Dublin  CHEMICAL CONCENTRATION ug/L  TPHd 680,000  307 City of Pleasanton Public Works  CHEMICAL CONCENTRATION ug/L  TPHd 680,000  CHEMICAL CONCENTRATION ug/L  CHEMICAL CONCENTRATION ug/L  TPHG  TPH | GE01 | <b>RACKER ID:</b> SLT19            | 765274                                    |                     |           | GRO      | unknown    |                | case in the 2020 WY.                                                               |
| GEOTRACKER ID: SLT19749067  TPHd 680,000  TPHd 680,000  GEOTRACKER ID: T10000001164  CHEMICAL CONCENTRATION ug/L  TPHd CONCENTRATION ug/L  CHEMICAL CONCENTRATION ug/L  TPHG   | 302  |                                    | FCI Dublin                                | 5701 8th Street     | Dublin    | 3A1      | 3B         | ACEH           | Case is inactive as of 1/21/2016.                                                  |
| 307 City of Pleasanton Public Works Cheater Parking Lot Pleasanton Theater Parking Lot Pleasanton Theater Parking Lot Pleasanton Theater Parking Lot TPHg  GEOTRACKER ID: T10000001164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | memanen Basiin                     |                                           |                     |           | CHEMICAL | CONCENTRAT | TION ug/L      |                                                                                    |
| Public Works Theater Parking Lot  CHEMICAL CONCENTRATION ug/L  TPHg  T10000001164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GEO1 | TRACKER ID: SLT19                  | 749067                                    |                     | _         | TPHd     | 680,000    |                |                                                                                    |
| GEOTRACKER ID: T10000001164  TPHg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 307  | City of Pleasanton<br>Public Works | City of Pleasanton<br>Theater Parking Lot | 0 Kottinger Drive   | Pleasanto |          |            |                | Inactive as of 1/21/2016.                                                          |
| GEOTRACKER ID: 110000001164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                    |                                           |                     | _         |          | CONCENTRAL | TON ug/L       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GE01 | TRACKER ID: T1000                  | 0001164                                   |                     |           |          |            |                |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                    |                                           |                     |           |          |            |                |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                    |                                           |                     |           |          |            |                |                                                                                    |

3/10/2021 Table 13-1; Page 14 of 27

| Z7 ID | OWNER                                       | SITE NAME           | ADDRESS                | CITY      | PRIORITY | STATUS | LEAD<br>AGENCY | NOTES                                                                                                     |
|-------|---------------------------------------------|---------------------|------------------------|-----------|----------|--------|----------------|-----------------------------------------------------------------------------------------------------------|
| 308   | Stockbridge/BHV<br>Emerald Place Land<br>Co | Green on Park Place | 5411 Martinelli Way    | Dublin    | 3C       | 8      | ACEH           | Slated for closure in 2014. No action in 2020.                                                            |
| GEOT  | <b>TRACKER ID:</b> T10000                   | 0005547             |                        |           |          |        |                |                                                                                                           |
| 312   | Cemex                                       | Cemex Sunol         | 6527 Calaveras<br>Road | Sunol     | 3A1      | 1      | ACEH           | Case is listed as inactive with no updates in GeoTracker for the the 2020 WY.                             |
| GEOT  | <b>TRACKER ID:</b> T10000                   | 0003431             |                        |           |          |        |                |                                                                                                           |
|       |                                             |                     |                        |           |          |        |                |                                                                                                           |
| 313   | Good Year Tire and<br>Rubber Company        | Just Tires          | 1485 First Street      | Livermore | 2C       | 8      | ACEH           | No updates were reported for this case in the 2020 WY. Comments on pending closure were due January 2017. |
| GEOT  | TRACKER ID: T10000                          | 0003435             |                        |           |          |        |                |                                                                                                           |

3/10/2021 Table 13-1; Page 15 of 27

| Z7 ID       | OWNER                                                                           | SITE NAME                          | ADDRESS                      | CITY     | PRIORITY | ' STATUS   | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------|------------------------------------|------------------------------|----------|----------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 317         | Walgreens                                                                       | Walgreens Spill Sunol              | 9494 Koopman Road            | Sunol    | 2C       | 8          | ACEH           | Eligible for closure as of 5/6/2020.                                                                                                                                                                                                                                                                                                                                      |
|             |                                                                                 |                                    |                              |          | CHEMICAL | CONCENTRAT | TION ug/L      |                                                                                                                                                                                                                                                                                                                                                                           |
| GEO1        | <b>TRACKER ID:</b> T10000                                                       | 0006478                            |                              | _        | TPHd     | 349        |                |                                                                                                                                                                                                                                                                                                                                                                           |
| 318         | E&B Natural<br>Resources<br>Management                                          | G.I.G Oil Production<br>Facility   | 8467 Patterson<br>Pass Road  | Livermor | e 2A4    | 8          | ACEH           | ACDEH has not responded to the RP's case closure request in 2017. All soil and groundwater samples were non-detect for fuel                                                                                                                                                                                                                                               |
|             | Corporation                                                                     |                                    |                              | _        | CHEMICAL | CONCENTRAT | TION ug/L      | contaminants and within background range for metals.                                                                                                                                                                                                                                                                                                                      |
| GEOT        | <b>TRACKER ID:</b> T10000                                                       | 0007269                            |                              |          |          |            |                |                                                                                                                                                                                                                                                                                                                                                                           |
| 319<br>GEOT | Johnson Drive Holdings I, LLC/Clorox Products Manufacturing  TRACKER ID: T10000 | Former Clorox Site -<br>Building 7 | 7200 - 7208<br>Johnson Drive | Pleasant | on 2A2   | 5R         | RWQCB          | An annual estimation letter was submitted in July 2020 for the expected outcome of work in the fiscal year 2020/2021 including further direction on the site investigation and update of site cleanup requirement. In October 2020, the RWQCB approved the expansion of the SVE system to include 6 additional soil vapor wells in an effort to accelarate clean up time. |

3/10/2021 Table 13-1; Page 16 of 27

| Z7 ID | OWNER                                                            | SITE NAME                                          | ADDRESS                       | CITY     | PRIORITY      | STATUS                            | LEAD<br>AGENCY | NOTES                                                                                                                                                                          |
|-------|------------------------------------------------------------------|----------------------------------------------------|-------------------------------|----------|---------------|-----------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 320   | Ready Family<br>Partnership, LP                                  | Dublin Crossroads<br>Center & Park Ave<br>Cleaners | 7100-7120 Dublin<br>Boulevard | Dublin   | 2A4           | 5C                                | ACDEH          | There were no new regulatory activities in 2020 water year.                                                                                                                    |
| GEOT  | <b>TRACKER ID:</b> T1000                                         | 00004783                                           |                               |          |               |                                   |                |                                                                                                                                                                                |
| 322   | Pacific Locomotive<br>Association DBA<br>Niles Canyon<br>Railway | Niles Canyon Railway                               | 9 Kilkare Road                | Sunol    | 3B1  CHEMICAL | 7<br>CONCENTRAT                   | ACDEH          | ACDEH sent a notice to comply letter in July 2020 for submission of Revised Site Investigation Report. A reponse was received in July 2020 to review.                          |
| GEO1  | TRACKER ID: T1000                                                | 00006021                                           |                               | _        | PCE           | 36                                |                | •                                                                                                                                                                              |
|       |                                                                  |                                                    |                               |          |               |                                   |                |                                                                                                                                                                                |
| 323   | Stoll Main Street                                                | Former American                                    | 555 Main Street               | Pleasant | on 2A4        | 3A                                | RWQCB          | One deep monitoring well was installed                                                                                                                                         |
| 323   | Stoll Main Street<br>Trust                                       | Former American<br>Cleaners                        | 555 Main Street               | Pleasant |               |                                   |                | according to the Deep Groundwater Assessment Work Plan submitted in April                                                                                                      |
|       | Trust                                                            | Cleaners                                           | 555 Main Street               | Pleasant |               | 3A<br><i>CONCENTRAT</i><br>49,000 |                | according to the Deep Groundwater<br>Assessment Work Plan submitted in April<br>2020. SVE pilot test wells were installed and<br>are pending test startup. The site assessment |
|       |                                                                  | Cleaners                                           | 555 Main Street               | Pleasant | CHEMICAL      | CONCENTRAT                        |                | according to the Deep Groundwater<br>Assessment Work Plan submitted in April<br>2020. SVE pilot test wells were installed and                                                  |

3/10/2021 Table 13-1; Page 17 of 27

| Z7 ID | OWNER                         | SITE NAME                                               | ADDRESS                          | CITY                | PRIORITY       | STATUS       | LEAD<br>AGENCY              | NOTES                                                                                                                                                         |
|-------|-------------------------------|---------------------------------------------------------|----------------------------------|---------------------|----------------|--------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 324   | MidPen Housing<br>Corporation | Chestnut Square 1651 and 1665 Liveri<br>Chestnut Street |                                  | Livermore           | 1A2            | 7            | ACDEH                       | ACDEH approved vapor probe installations in September 2020. RP proposed air sampling                                                                          |
|       |                               | 0000007202                                              |                                  | CI                  | HEMICAL        | CONCENTRAT   | TION ug/L                   | and soil gas probe locations based on proximity to previously detected PCE                                                                                    |
| GEOT  | <b>TRACKER ID:</b> T100       |                                                         | 7700                             |                     | PCE 15         | ,            | concentrations in soil gas. |                                                                                                                                                               |
| GLOI  | RACKER ID. 1100               | 00007202                                                |                                  |                     | TPHd           | 130          |                             |                                                                                                                                                               |
|       |                               |                                                         |                                  |                     |                |              |                             |                                                                                                                                                               |
| 324   | MidPen Housing<br>Corporation | Chestnut Square                                         | 1651 and 1665<br>Chestnut Street | Livermore <i>CI</i> | 1A2<br>HEMICAL | 7 CONCENTRAT | ACDEH                       | ACDEH cleared the site for occupancy and changed the case status to long term management. ACDEH is proceeding with regulatory case closure of Cleanup Program |
|       |                               |                                                         |                                  |                     |                | ·            |                             | changed the case status to long term                                                                                                                          |

| 325  | MidPen Housing<br>Corporation | 217 North N St | 217 North N Street | Livermore | e 2A1    | 7         | ACDEH     | No new regulatory activity was reported in Geotracker for the 2020 WY. |
|------|-------------------------------|----------------|--------------------|-----------|----------|-----------|-----------|------------------------------------------------------------------------|
|      |                               |                |                    |           | CHEMICAL | CONCENTRA | TION ug/L |                                                                        |
| CEOT | TRACKER ID: T100              | 00011004       |                    | _         | PCE      | 13        |           |                                                                        |
| GEUI | TRACKER ID: 1100              | 00011094       |                    |           |          |           |           |                                                                        |
|      |                               |                |                    |           |          |           |           |                                                                        |
|      |                               |                |                    |           |          |           |           |                                                                        |
|      |                               |                |                    |           |          |           |           |                                                                        |
|      |                               |                |                    |           |          |           |           |                                                                        |

3/10/2021 Table 13-1; Page 18 of 27

| 77 ID | OWNER                      | SITE NAME                            | ADDRESS                          | CITY       | PRIORITY | Y STATUS           | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                                                                                       |                                                                                      |
|-------|----------------------------|--------------------------------------|----------------------------------|------------|----------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 326   | City of Livermore          | Livermore Department of Public Works | Rincon and Juniper and Spruce    | Livermore  | 1A1      | 1                  | RWQCB          | A Site Assessment Workplan was approved by the RWQCB in December 2019 for soil gas sampling. Soil gas samples was analyzed for                                                                                                                                                                                              |                                                                                      |
|       |                            |                                      |                                  |            | HEMICAL  | CONCENTRATION ug/L |                | sampling. Soil gas samples was analyzed for PCE, TCE, cis-1,2-DCE, trans-1,2-DCE,1,1-                                                                                                                                                                                                                                       |                                                                                      |
| GEOT  | <b>RACKER ID:</b> SLT200   | 09096                                |                                  |            | PCE      |                    |                | DCE, 1,2-DCA, and vinyl chloride following th U.S. EPA Test Method 8260C. Comments from the approval letter described an investigation of California Water Service (CWS) public water supply well 10-01. This investigation concluded that the Site was not the source of the PCE contamination reported in CWS well 10-01. |                                                                                      |
| 327   | BMMR USA, Inc.             | VIP Cleaners                         | 1809 Santa Rita<br>Road, Suite F | Pleasanton | 2A2      | 3B                 | RWQCB          | An additional remedial investigation was performed to further investigate elevated levels                                                                                                                                                                                                                                   |                                                                                      |
|       |                            |                                      |                                  | C          | HEMICAL  | CONCENTRAT         | TION ug/L      | of TCE, PCE and TPHg detected in soil gas<br>and groundwater, and elevated levels of PCE                                                                                                                                                                                                                                    |                                                                                      |
| CEOT  | <b>RACKER ID:</b> T10000   | 200000254                            |                                  | _          |          | PCE                | 140            |                                                                                                                                                                                                                                                                                                                             | in soil. The report for this invetigation was submitted in July, 2020 and is pending |
| GEUI  | KACKEK ID: 110000          | 0006254                              |                                  |            | TPHg     | 130                |                | regulatory approval. Elevated levels of PCE was detected in two of the 4 groundwater samples and elevated levels of TPHg was detected in 1 of 4 groundwater samples.                                                                                                                                                        |                                                                                      |
|       |                            |                                      |                                  |            |          |                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                      |
| 328   | Diamond Properties,<br>Inc | Pleasanton Lucky<br>Cleaners         | 6051 W. Las Positas<br>Blvd.     | Pleasanton | 3B1      | ЗА                 | RWQCB          | The 2019 Source Investigation Report was approved by SFBRWQCB. No further investigation is required. This site will remain GeoTracker database as noncase information                                                                                                                                                       |                                                                                      |
| GEOT  | <b>RACKER ID:</b> T10000   | 0008267                              |                                  |            |          |                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                      |
|       |                            |                                      |                                  |            |          |                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                      |
|       |                            |                                      |                                  |            |          |                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                      |
|       |                            |                                      |                                  |            |          |                    |                |                                                                                                                                                                                                                                                                                                                             |                                                                                      |

3/10/2021 Table 13-1; Page 19 of 27

| Z7 ID      | OWNER                                               | SITE NAME                             | ADDRESS                       | CITY       | PRIORITY | STATUS             | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                                                                                       |
|------------|-----------------------------------------------------|---------------------------------------|-------------------------------|------------|----------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 329        | Terrell Bates &<br>Kimberly R Trust                 | Pleasanton French<br>Laundry (Former) | 560 Main Street               | Pleasanton | 2A4      | 3A                 | RWQCB          | A 2019 Site Assessment reported detections of PCE in one soil sample below SFBRWQCB soil screening levels for residential and                                                                                                                                                                                               |
|            |                                                     |                                       |                               | CF         | HEMICAL  | CONCENTRATION ug/L |                | commercial/inductrial scenarios, and PCE in                                                                                                                                                                                                                                                                                 |
| GEO        | TRACKER ID: T1000                                   | 00008241                              |                               |            | PCE      | 4.8                |                | one grab water sample just under MCL. PCE was reported in all but one soil gas sample above the SFBRWQCB soil gas vapor intrusion residential screening levels.                                                                                                                                                             |
| 329        | Terrell Bates &<br>Kimberly R Trust                 | Pleasanton French<br>Laundry (Former) | 560 Main Street               | Pleasanton | 2A4      | 3A                 | RWQCB          | The Regional Water Quality Control Board approved the Indoor Air Samping and Analysis                                                                                                                                                                                                                                       |
|            |                                                     |                                       |                               | CH         | HEMICAL  | CONCENTRA          | TION ug/L      | Work Plan and Addendum in February 2020 for additional air sampling at the site and the                                                                                                                                                                                                                                     |
| GEO?       | TRACKER ID: T1000                                   | 00008241                              |                               |            | PCE      | 4.8                | <del></del> ,  | surrounding areas in order to determine whether subsurface contamination poses a threat to human health through the vapor intrusion pathway. No additional soil or groundwater sampling was included in the plan.                                                                                                           |
| 330<br>GEO | FFHS Associates -<br>Gateway, L.P.;<br>Margo Foster | City Cleaners                         | 4855 Hopyard Road,<br>Suite C | Pleasanton | 2A4      | 3A                 | RWQCB          | The Interim Source Area Removal Workplan was approved in March, 2020 for an evaluation of four remedial alternatives that recommends excavation for tetrachlorothene (PCE) impacted soil removal and soil vapor extraction (SVE) for removing residual PCE in soil and soil gas. The interim remedial action report is due. |

3/10/2021 Table 13-1; Page 20 of 27

| Z7 ID       | OWNER                                                   | SITE NAME                         | ADDRESS           | CITY      | PRIORITY | STATUS | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|---------------------------------------------------------|-----------------------------------|-------------------|-----------|----------|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 331<br>GEO7 | Taylor Corporation;<br>John Tanke<br>TRACKER ID: T10000 | Taylor Corporation 0013016        | 5775 Brisa Street | Livermore | 2A1      | 3В     | RWQCB          | In May 2020, SFBRWQCB concluded that groundwater pollution detected beneath the Taylor Property is likely the result of the migration of pollutants in groundwater from upgradient sources. They may revisit this finding should future data indicate otherwise.                                                                                                                                                                                                                                                                          |
| 332<br>GEO7 | Renn Transportation  TRACKER ID: T10000                 | Renn Transportation<br>Fuel Spill | I-680             | Sunol     | 2A2      | 7      | ACDEH          | On September 16, 2019, over 3,000 gallons of gasoline was released on I-680 near mile marker 119, south of 5815 Mission Road, as a result of a collision. Gasoline flowed down a concrete channel from 680 near Happiness Kennels where the channel is not lined. 4 Monitoring wells and 2 vapor wells were installed under drilling permit 2020009.                                                                                                                                                                                      |
| 332<br>GEO7 | Renn Transportation  FRACKER ID: T10000                 | Renn Transportation<br>Fuel Spill | I-680             | Sunol     | 2A2      | 7      | ACDEH          | ACDEH Conditional Approval for Implementation of Work Plan dated March, 9 2020 concurred that the results of environmental sampling should be compared to the ESL for gasoline range petroleum hydrocarbons, however, the results of environmental sampling must also be compared to applicable ESLs for other applicable constituents of concern, including benzene, toluene, ethylbenzene, xylenes, and naphthalene. According to ACDEH, an additional monitoring well in the source area to the proposed installations is appropriate. |

3/10/2021 Table 13-1; Page 21 of 27

| Z7 ID | OWNER                          | SITE NAME       | ADDRESS                 | CITY      | PRIORITY     | STATUS     | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                                          |
|-------|--------------------------------|-----------------|-------------------------|-----------|--------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | J Cleaners  **CRACKER ID: T100 | J Cleaners      | 2093 Railroad<br>Avenue | Livermore | 1A2          | 3A         | RWQCB          | New site assessment as of 12/31/2019. J<br>Cleaners operated in the early 1970s until late<br>2007. Soil samples collected in 2006 and 2009<br>detected tetrachloroethene (PCE). Currently<br>assessing soil vapor and groundwater<br>contamination previous to redevelopment. |
| 335   | J Cleaners                     | J Cleaners      | 2093 Railroad<br>Avenue | Livermore | 1A2          | 3A         | RWQCB          | In May 2020, the SFBRWQCB approved the Vapor Intrusion Assessment Workplan for soil gas well installation down to 15 feet in addition to further assessment of groundwater.                                                                                                    |
| GEOT  | <b>TRACKER ID:</b> T100        | 000008401       |                         |           |              |            |                | Elevated concentrations of PCE had not been detected at depths of approximately 60 feet beneath the Site; however, according to SFBRWQCB, further assessment of groundwater downgradient of the Site was warranted.                                                            |
| 336   | Old Train Depot                | Old Train Depot | 2009 Railroad<br>Avenue | Livermore | 1A2          | 5C         | RWQCB          | Site assessment as of 12/22/2020.                                                                                                                                                                                                                                              |
|       |                                |                 |                         | CH        | IEMICAL      | CONCENTRAT | TION ug/L      |                                                                                                                                                                                                                                                                                |
| GEO1  | <b>TRACKER ID:</b> T100        | 000016758       |                         |           | PCE          |            |                |                                                                                                                                                                                                                                                                                |
|       |                                |                 |                         |           | TPHd<br>TPHg |            |                |                                                                                                                                                                                                                                                                                |
|       |                                |                 |                         |           |              |            |                |                                                                                                                                                                                                                                                                                |

3/10/2021 Table 13-1; Page 22 of 27

| Z7 ID            | OWNER                   | SITE NAME       | ADDRESS                 | CITY      | PRIORITY              | Y STATUS  | LEAD<br>AGENCY                                                                                                                                                                                              | NOTES                                                                                                                                                                                 |  |  |  |
|------------------|-------------------------|-----------------|-------------------------|-----------|-----------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 336              | Old Train Depot         | Old Train Depot | 2009 Railroad<br>Avenue | Livermore | e 1A2                 | 5C        | RWQCB                                                                                                                                                                                                       | A Site Assessment and Summary Report was submitted in April, 2020. PCE was detected in                                                                                                |  |  |  |
|                  |                         |                 | , worldo                |           | CHEMICAL CONCENTRATIO |           | TION ug/L                                                                                                                                                                                                   | well MW-4 at a concentration of 10.2 µg/L during the July 26, 2018 sampling. PCE                                                                                                      |  |  |  |
| GEOT             | <b>TRACKER ID:</b> T100 | 00016758        |                         |           | PCE                   |           |                                                                                                                                                                                                             | concentrations ranged from 4.6 $\mu$ g/L to 16 $\mu$ g/L in grab shallow zone groundwater (66 to 70 ft                                                                                |  |  |  |
|                  |                         |                 |                         |           | TPHd<br>TPHg          |           |                                                                                                                                                                                                             | bgs) samples. PCE was detected at a concentration of 4.9 $\mu$ g/L at 41 to 45 ft bgs in perched zone groundwater. These concentrations exceed the 2019 Tier 1 ESL of 0.64 $\mu$ g/L. |  |  |  |
| 336              | Old Train Depot         | Old Train Depot | 2009 Railroad<br>Avenue | Livermore | 1A2                   | 5C        | RWQCB                                                                                                                                                                                                       | A Site Assessment and Summary reported TPHg and TPHd detected at maximum concentrations of 170 µg/L and 330 µg/L,                                                                     |  |  |  |
|                  |                         |                 |                         | _         | CHEMICAL              | CONCENTRA | TION ug/L                                                                                                                                                                                                   | respectively during perched groundwater sampling in 2005, and were above the Tier 1                                                                                                   |  |  |  |
| GEO <sub>1</sub> | <b>TRACKER ID:</b> T100 | 00016758        |                         |           | PCE<br>TPHd           |           |                                                                                                                                                                                                             | ESLs. Chloroform detected in the July 11, 2018 grab sample from the boring for well M                                                                                                 |  |  |  |
|                  |                         |                 |                         |           | TPHg                  |           |                                                                                                                                                                                                             | 4 contained a concentration of 1.3 $\mu$ g/L, above the Tier I ESL of 0.81 $\mu$ g/L.                                                                                                 |  |  |  |
| 225              | Pacific Avenue          | Pacific Avenue  | 3018 Pacific Avenue     | Livermore | 1A2                   | 3B        | RWQCB                                                                                                                                                                                                       | New site assessment as of 10/31/2019. This                                                                                                                                            |  |  |  |
| 337              | Cleaners                | Cleaners        | 3016 Pacific Avenue     | Livermore | : IAZ                 |           |                                                                                                                                                                                                             | case involves one operating dry cleaner (PCE use ~1966-2010) located in an existing strip                                                                                             |  |  |  |
|                  |                         |                 |                         | _         | CHEMICAL              | CONCENTRA | TION ug/L                                                                                                                                                                                                   | mall structure Also, a gasoline service station operated on the western end of the site ~1963-                                                                                        |  |  |  |
| GEOT             | RACKER ID: T10000008716 |                 |                         | PCE       |                       |           | 1988. The site is currently being considered for redevelopment. PCE has been found in soil, soil vapor, and groundwater in and around the site exceeding the current Environmental Screening Levels (ESLs). |                                                                                                                                                                                       |  |  |  |
|                  |                         |                 |                         |           |                       |           |                                                                                                                                                                                                             |                                                                                                                                                                                       |  |  |  |

3/10/2021 Table 13-1; Page 23 of 27

| Z7 ID       | OWNER                               | SITE NAME                  | ADDRESS             | CITY      | PRIORITY | STATUS             | LEAD<br>AGENCY | NOTES                                                                                                                                                                                                                                                  |
|-------------|-------------------------------------|----------------------------|---------------------|-----------|----------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 337         | Pacific Avenue<br>Cleaners          | Pacific Avenue<br>Cleaners | 3018 Pacific Avenue | Livermore | 1A2      | 3B                 | RWQCB          | SFBRWQCB approved a workplan in March of 2020 to assess the extent of contamination in groundwater and soil vapor (where 2019                                                                                                                          |
|             |                                     |                            |                     | C         | HEMICAL  | CONCENTRATION ug/L |                | Environmental Screening Levels are                                                                                                                                                                                                                     |
| GEOT        | GEOTRACKER ID: T10000008716         |                            |                     | PCE       |          |                    |                | exceeded); and to evaluate if remedial actions are needed to reduce or eliminate future human health risks. The Property is currently being considered for redevelopment.                                                                              |
|             |                                     |                            |                     |           |          |                    |                |                                                                                                                                                                                                                                                        |
| 338<br>GEO1 | Quality Cleaners  FRACKER ID: T1000 | Quality Cleaners 0014462   | 2048 First Street   | Livermore | 1A1      | 3A                 | RWQCB          | A new geotracker case was created for Quality Cleaners. City of Livermore requested that the Downtown Core Project to be managed as two cleanup sites, J Cleaners and Quality Cleaners. The old Train Depot is also part of the DownTwon Core Project. |
|             |                                     |                            |                     |           |          |                    |                |                                                                                                                                                                                                                                                        |
|             |                                     |                            |                     |           |          |                    |                |                                                                                                                                                                                                                                                        |
| 339         | Sparklizing Cleaners                | Sparklizing Cleaners       | 855 Rincon          | Livermore | 1A2      | 5R                 | RWQCB          | In November RWQCB approved the Investigation Completion Report. The RWQCB required a long-term soil vapor monitoring plan, and a deed restriction that refers to the O&M plan and the SMP.                                                             |
| GEOT        | <b>Tracker ID:</b> T1000            | 0008739                    |                     |           |          |                    |                |                                                                                                                                                                                                                                                        |
|             |                                     |                            |                     |           |          |                    |                |                                                                                                                                                                                                                                                        |

3/10/2021 Table 13-1; Page 24 of 27

| Z7 ID | OWNER                                 | SITE NAME                          | ADDRESS          | CITY      | PRIORITY | STATUS | LEAD<br>AGENCY | NOTES                                                                                                                                                         |
|-------|---------------------------------------|------------------------------------|------------------|-----------|----------|--------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 340   | Arroyo Crossing                       | Arroyo Crossing                    | 1364 Arroyo Road | Livermore | 3A1      | 7      | RWQCB          | Case remains open due to electronic reporting incompliance.                                                                                                   |
| GEOT  | Tracker Id: SL060                     | 00174278                           |                  |           |          |        |                |                                                                                                                                                               |
| 341   | Warmington<br>Homes - Hansen<br>Hills | Warmington Homes -<br>Hansen Hills | Silvergate Drive | Livermore | 3A1      | NR     | RWQCB          | Inactive as of 6/4/2009. No records have been uploaded to Geotracker for this site.                                                                           |
| GEO   | TRACKER ID: SL183                     | 307727                             |                  |           |          |        |                |                                                                                                                                                               |
|       |                                       |                                    |                  |           |          |        |                |                                                                                                                                                               |
| 342   | Camp Parks                            | Camp Parks                         | 0 Parks RFTA     | Dublin    | 3A2      | 8      | ACDEH          | UST site inactive as of 1/21/16. ACEH approved No further Action letter in 1996 but site is non-complianct due to failure to upload documents electronically. |
| GEO   | TRACKER ID: T060                      | 19796867                           |                  |           |          |        |                |                                                                                                                                                               |
|       |                                       |                                    |                  |           |          |        |                |                                                                                                                                                               |
|       |                                       |                                    |                  |           |          |        |                |                                                                                                                                                               |

3/10/2021 Table 13-1; Page 25 of 27

| Z7 ID | OWNER                                  | SITE NAME                              | ADDRESS                   | CITY       | PRIORITY | STATUS | LEAD<br>AGENCY | NOTES                |
|-------|----------------------------------------|----------------------------------------|---------------------------|------------|----------|--------|----------------|----------------------|
| 343   | Laguna Oaks Site                       | Laguna Oaks Site                       | 3465 Old Foothill<br>Road | Pleasanton | 3A1      | 3B     | RWQCB          | Inactive as of 2016. |
| GE01  | TRACKER ID: T0601                      | 9749061                                |                           |            |          |        |                |                      |
|       |                                        |                                        |                           |            |          |        |                |                      |
|       |                                        |                                        |                           |            |          |        |                |                      |
| 344   | Pleasanton Assisted<br>Living Facility | Pleasanton Assisted<br>Living Facility | 0 JUNIPERO ST &<br>SUNOL  | Pleasanton | 3A2      | 3B     | RWQCB          | Inactive as of 2016. |
| GE01  | TRACKER ID: T06019                     | 9724209                                |                           |            |          |        |                |                      |
|       |                                        |                                        |                           |            |          |        |                |                      |
|       |                                        |                                        |                           |            |          |        |                |                      |

3/10/2021 Table 13-1; Page 26 of 27

Z7 ID OWNER SITE NAME ADDRESS CITY PRIORITY STATUS LEAD NOTES
AGENCY

Z7 ID - corresponds to file number in TSS database and the location on site maps

OWNER - responsible party for the contamination investigation/cleanup

SITE NAME - indicates a site name if different from owner

PRIORITY - the first number of the priority code indicates whether the case is high priority (1), moderate priority (2), or low priority (3).

STATUS - the status code is based on the RWQCB ranking of the progress of a case (see below)

NOTES - highlights, cureent activites, or concerns at a site.

#### CASE STATUS CODES:

1 - Leak Confirmed

3A - Preliminary Site Assessment Workplan Submitted

3B - Preliminary Site Assessment Underway

5C - Pollution Characterization Underway

5R Remediation Workplan (Corrective Action Plan) Submitted

7 - Remediation Underway

8 - Post Remediation Monitoring Begun

CL - Case Closure

NR - Further investigation not required

ReO - Reopened

CONCENTRATION ug/L - the most recent concentration in groundwater in micrograms per liter (parts per billion)

CHEMICAL - the chemicals of concern at the site.

BENZ - benzene TCE - trichloroethene CCl4 - carbon tetrachloride TOLU - toluene

Cr(VI) - hexavalent chromium TPHd - total petroleum hydrocarbons diesel 1,2-DCE - 1,2-dichloromethene TPHg - total petroleum hydrocarbons

DRO - diesel range organics gasoline

GRO - gasoline range organics TPHmo - total petroleum hydrocarbons

MTBE - methyl tertiary-butyl ether motoroil

NO3 - nitrate VC - vinyl chloride PCE - tetrachloroethene XYL - xylenes

TBA - tertiary-butyl alchohol

3/10/2021 Table 13-1; Page 27 of 27



| ALT INFLOW COMPONENTS      | 1974   | 1975   | 1976   | 1977   | 1978   | 1979   | 1980   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|
| NATURAL STREAM RECHARGE    | 3,210  | 3,464  | 874    | 581    | 4,638  | 1,723  | 2,706  |
| Total Arroyo Valle         | 1,018  | 1,041  | 391    | 315    | 957    | 707    | 777    |
| Flood releases recharge    | 100    | 344    | 0      | 0      | 216    | 0      | 128    |
| Non Flood Natural Inflow   | 918    | 697    | 391    | 315    | 741    | 707    | 649    |
| Arroyo Mocho               | 1,717  | 2,043  | 293    | 76     | 3,206  | 636    | 1,358  |
| Arroyo Las Positas         | 475    | 380    | 190    | 190    | 475    | 380    | 571    |
| AV PRIOR RIGHTS            | 361    | 418    | 31     | 0      | 494    | 267    | 386    |
| ARTIFICIAL STREAM RECHARGE | 986    | 2,201  | 1,914  | 2,289  | 3,286  | 3,699  | 2,897  |
| Arroyo Valle               | 293    | 1,174  | 509    | 883    | 1,427  | 1,599  | 1,234  |
| Arroyo Mocho               | 340    | 497    | 875    | 876    | 1,350  | 1,570  | 1,432  |
| Arroyo Las Positas         | 353    | 530    | 530    | 530    | 509    | 530    | 231    |
| INJECTION WELL RECHARGE    | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| RAINFALL RECHARGE          | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Lake Recharge              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| LEAKAGE                    | 21     | 25     | 30     | 35     | 41     | 48     | 56     |
| APPLIED WATER RECHARGE     | 7,670  | 7,218  | 9,123  | 10,675 | 8,352  | 8,304  | 7,175  |
| SUBSURFACE BASIN INFLOW    | 2,038  | 2,038  | 2,058  | 3,648  | 2,506  | 2,017  | 1,325  |
| ET INFLOW                  | 14,286 | 15,364 | 14,030 | 17,228 | 19,317 | 16,058 | 14,545 |

| OUTFLOW COMPONENTS               | 1974    | 1975   | 1976   | 1977   | 1978   | 1979   | 1980   |
|----------------------------------|---------|--------|--------|--------|--------|--------|--------|
| MUNICIPAL PUMPAGE                | -7,217  | -6,577 | -5,074 | -4,382 | -4,579 | -5,351 | -4,458 |
| Zone 7 Wells - Hop, Stone, COL   | 0       | 0      | 0      | 0      | 0      | 0      | 0      |
| Zone 7 Wells - Mocho             | -3,303  | -2,057 | -842   | -201   | -506   | -532   | -26    |
| Demin Salts Exported from Valley | 0       | 0      | 0      | 0      | 0      | 0      | 0      |
| Other Pumpage                    | -3,914  | -4,520 | -4,232 | -4,181 | -4,073 | -4,819 | -4,432 |
| AGRICULTURAL PUMPAGE             | -2,289  | -1,476 | -2,997 | -3,241 | -2,081 | -2,420 | -1,678 |
| MINING USE                       | -1,126  | -1,725 | -802   | -668   | -869   | -1,603 | -2,508 |
| Stream Export                    | -745    | -1,345 | -422   | -287   | -489   | -1,223 | -2,127 |
| Evaporation                      | 0       | 0      | 0      | 0      | 0      | 0      | 0      |
| Processing Losses                | -380    | -380   | -380   | -380   | -380   | -380   | -380   |
| GROUNDWATER BASIN OVERFLOW       | 0       | 0      | 0      | 0      | 0      | -173   | -612   |
| NET OUTFLOW                      | -10,632 | -9,778 | -8,873 | -8,291 | -7,529 | -9,547 | -9,256 |

| NET SALT INFLOW (Tons)         | 3,654 | 5,586 | 5,157  | 8,937  | 11,788 | 6,511  | 5,289  |
|--------------------------------|-------|-------|--------|--------|--------|--------|--------|
| CUMULATIVE SALT INFLOW (Tons)* | 3,654 | 9,240 | 14,397 | 23,334 | 35,122 | 41,633 | 46,922 |

| TDS Concentration Calculations           | 1974    | 1975    | 1976    | 1977    | 1978    | 1979    | 1980    |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Net Basin Recharge (AF)                  | -478    | 5,508   | -4,311  | -5,953  | 11,942  | 6,394   | 8,103   |
| Basin Storage (HI Method)(AF)            | 211,522 | 217,030 | 212,719 | 206,766 | 218,708 | 225,102 | 233,205 |
| Total Salt in Main Basin (tons)          | 133,252 | 138,838 | 143,995 | 152,932 | 164,720 | 171,231 | 176,520 |
| Main Basin TDS Concentration (mg/L)      | 464     | 471     | 498     | 544     | 554     | 560     | 557     |
| Cumulative Increase in TDS Conc (mg/L)** | 14      | 21      | 48      | 94      | 104     | 110     | 107     |

<sup>\*</sup> Basinwide salt buildup since 1973

<sup>\*\*</sup> Basinwide TDS concentration increase relative to 1973 value of 450 mg/L



| SALT INFLOW COMPONENTS     | 1981   | 1982   | 1983   | 1984   | 1985   | 1986   | 1987   | 1988   | 1989   | 1990   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NATURAL STREAM RECHARGE    | 1,513  | 4,803  | 7,657  | 5,286  | 3,058  | 4,941  | 2,852  | 2,610  | 2,782  | 2,480  |
| Total Arroyo Valle         | 579    | 1,048  | 1,433  | 936    | 375    | 779    | 232    | 372    | 187    | 206    |
| Flood releases recharge    | 0      | 271    | 624    | 20     | 0      | 415    | 0      | 0      | 0      | 0      |
| Non Flood Natural Inflow   | 579    | 777    | 809    | 916    | 375    | 364    | 232    | 372    | 187    | 206    |
| Arroyo Mocho               | 478    | 2,614  | 4,626  | 2,508  | 932    | 2,269  | 458    | 490    | 440    | 233    |
| Arroyo Las Positas         | 456    | 1,141  | 1,598  | 1,842  | 1,751  | 1,893  | 2,162  | 1,748  | 2,155  | 2,041  |
| AV PRIOR RIGHTS            | 251    | 502    | 381    | 236    | 328    | 286    | 283    | 325    | 356    | 125    |
| ARTIFICIAL STREAM RECHARGE | 3,238  | 1,617  | 184    | 0      | 0      | 0      | 0      | 525    | 1,585  | 1,809  |
| Arroyo Valle               | 1,719  | 663    | 0      | 0      | 0      | 0      | 0      | 0      | 51     | 132    |
| Arroyo Mocho               | 1,394  | 894    | 184    | 0      | 0      | 0      | 0      | 525    | 1,534  | 1,677  |
| Arroyo Las Positas         | 125    | 60     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| INJECTION WELL RECHARGE    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| RAINFALL RECHARGE          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Lake Recharge              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| LEAKAGE                    | 65     | 74     | 84     | 94     | 105    | 115    | 125    | 136    | 147    | 158    |
| APPLIED WATER RECHARGE     | 5,507  | 4,709  | 4,723  | 5,046  | 5,938  | 6,632  | 5,558  | 6,834  | 6,015  | 6,541  |
| SUBSURFACE BASIN INFLOW    | 1,284  | 1,284  | 876    | 1,325  | 1,528  | 1,508  | 1,569  | 1,875  | 2,364  | 2,568  |
| NET INFLOW                 | 11,858 | 12,989 | 13,905 | 11,987 | 10,957 | 13,482 | 10,387 | 12,305 | 13,249 | 13,681 |

| OUTFLOW COMPONENTS               | 1981    | 1982    | 1983    | 1984    | 1985    | 1986    | 1987   | 1988    | 1989   | 1990   |
|----------------------------------|---------|---------|---------|---------|---------|---------|--------|---------|--------|--------|
| MUNICIPAL PUMPAGE                | -4,700  | -4,748  | -5,410  | -5,525  | -5,752  | -6,465  | -5,537 | -6,662  | -6,915 | -7,185 |
| Zone 7 Wells - Hop, Stone, COL   | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0       | -54    | -441   |
| Zone 7 Wells - Mocho             | 0       | 0       | -17     | -227    | -863    | -869    | -326   | -1,425  | -2,082 | -1,683 |
| Demin Salts Exported from Valley | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0       | 0      | 0      |
| Other Pumpage                    | -4,700  | -4,748  | -5,393  | -5,298  | -4,889  | -5,595  | -5,211 | -5,237  | -4,779 | -5,062 |
| AGRICULTURAL PUMPAGE             | -1,553  | -844    | -912    | -1,015  | -1,378  | -1,428  | -998   | -1,043  | -776   | -944   |
| MINING USE                       | -4,372  | -4,161  | -7,834  | -2,857  | -2,814  | -6,011  | -839   | -2,301  | -1,728 | -918   |
| Stream Export                    | -3,992  | -3,781  | -7,454  | -2,476  | -2,433  | -5,535  | -364   | -1,825  | -1,253 | -443   |
| Evaporation                      | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0       | 0      | 0      |
| Processing Losses                | -380    | -380    | -380    | -380    | -380    | -475    | -475   | -475    | -475   | -475   |
| GROUNDWATER BASIN OVERFLOW       | -635    | -2,494  | -3,418  | -2,587  | -1,386  | -693    | -693   | -462    | -122   | 0      |
| NET OUTFLOW                      | -11,260 | -12,247 | -17,574 | -11,984 | -11,330 | -14,597 | -8,067 | -10,468 | -9,541 | -9,047 |

| NET SALT INFLOW (Tons)         | 598    | 742    | -3,669 | 3      | -373   | -1,115 | 2,320  | 1,837  | 3,708  | 4,634  |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CUMULATIVE SALT INFLOW (Tons)* | 47,520 | 48,262 | 44,593 | 44,596 | 44,223 | 43,108 | 45,428 | 47,265 | 50,973 | 55,607 |

| TDS Concentration Calculations           | 1981    | 1982    | 1983    | 1984    | 1985    | 1986    | 1987    | 1988    | 1989    | 1990    |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Net Basin Recharge (AF)                  | -528    | 11,593  | 9,192   | -4,203  | -9,722  | -1,684  | -7,906  | -9,106  | -4,973  | -5,692  |
| Basin Storage (HI Method)(AF)            | 232,677 | 244,270 | 253,462 | 249,259 | 239,537 | 237,853 | 229,947 | 220,841 | 215,868 | 210,176 |
| Total Salt in Main Basin (tons)          | 177,118 | 177,860 | 174,191 | 174,194 | 173,821 | 172,706 | 175,026 | 176,863 | 180,571 | 185,205 |
| Main Basin TDS Concentration (mg/L)      | 560     | 536     | 506     | 514     | 534     | 535     | 560     | 590     | 616     | 649     |
| Cumulative Increase in TDS Conc (mg/L)** | 110     | 86      | 56      | 64      | 84      | 85      | 110     | 140     | 166     | 199     |

<sup>\*</sup> Basinwide salt buildup since 1973

<sup>\*\*</sup> Basinwide TDS concentration increase relative to 1973 value of 450 mg/L



| SALT INFLOW COMPONENTS     | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NATURAL STREAM RECHARGE    | 3,356  | 3,665  | 5,743  | 2,544  | 4,376  | 4,331  | 4,639  | 5,704  | 3,727  | 3,409  |
| Total Arroyo Valle         | 575    | 743    | 1,083  | 300    | 1,034  | 400    | 1,450  | 1,661  | 1,361  | 956    |
| Flood releases recharge    | 98     | 0      | 528    | 0      | 472    | 336    | 183    | 524    | 0      | 55     |
| Non Flood Natural Inflow   | 477    | 743    | 555    | 300    | 562    | 64     | 1,267  | 1,137  | 1,361  | 901    |
| Arroyo Mocho               | 1,023  | 814    | 2,174  | 995    | 1,580  | 2,627  | 1,741  | 2,292  | 996    | 857    |
| Arroyo Las Positas         | 1,758  | 2,108  | 2,486  | 1,249  | 1,762  | 1,304  | 1,448  | 1,751  | 1,370  | 1,596  |
| AV PRIOR RIGHTS            | 290    | 151    | 276    | 321    | 306    | 87     | 93     | 188    | 149    | 175    |
| ARTIFICIAL STREAM RECHARGE | 1,590  | 410    | 1,953  | 2,795  | 1,026  | 491    | 1,325  | 500    | 1,352  | 2,276  |
| Arroyo Valle               | 36     | 185    | 385    | 293    | 49     | 31     | 472    | 107    | 321    | 242    |
| Arroyo Mocho               | 1,554  | 225    | 1,568  | 2,502  | 977    | 460    | 853    | 393    | 1,031  | 2,034  |
| Arroyo Las Positas         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| INJECTION WELL RECHARGE    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 204    | 497    | 498    |
| RAINFALL RECHARGE          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Lake Recharge              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| LEAKAGE                    | 169    | 181    | 193    | 206    | 220    | 234    | 248    | 263    | 279    | 294    |
| APPLIED WATER RECHARGE     | 6,918  | 5,793  | 5,109  | 4,989  | 3,323  | 4,071  | 4,887  | 4,367  | 3,479  | 4,314  |
| SUBSURFACE BASIN INFLOW    | 3,423  | 3,199  | 2,710  | 2,221  | 2,017  | 1,875  | 1,386  | 1,651  | 1,528  | 1,846  |
| NET INFLOW                 | 15,746 | 13,399 | 15,984 | 13,076 | 11,268 | 11,089 | 12,578 | 12,877 | 11,011 | 12,812 |

| OUTFLOW COMPONENTS               | 1991    | 1992   | 1993   | 1994   | 1995   | 1996    | 1997    | 1998    | 1999    | 2000    |
|----------------------------------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| MUNICIPAL PUMPAGE                | -11,014 | -8,752 | -6,072 | -3,867 | -2,681 | -3,874  | -5,192  | -6,468  | -6,101  | -8,560  |
| Zone 7 Wells - Hop, Stone, COL   | -1,679  | -1,185 | -859   | -85    | -87    | -754    | -270    | -475    | -2,362  | -2,553  |
| Zone 7 Wells - Mocho             | -3,313  | -2,111 | -609   | -24    | -125   | -767    | -682    | -397    | -167    | -783    |
| Demin Salts Exported from Valley | 0       | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       |
| Other Pumpage                    | -6,023  | -5,455 | -4,604 | -3,757 | -2,469 | -2,353  | -4,240  | -5,596  | -3,572  | -5,224  |
| AGRICULTURAL PUMPAGE             | -249    | -236   | -142   | -130   | -88    | -130    | -155    | -47     | -46     | -188    |
| MINING USE                       | -970    | -1,007 | -2,134 | -4,928 | -6,883 | -7,507  | -9,983  | -9,588  | -8,642  | -5,792  |
| Stream Export                    | -495    | -532   | -1,658 | -4,453 | -6,408 | -7,041  | -9,460  | -9,084  | -8,081  | -5,316  |
| Evaporation                      | 0       | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       | 0       |
| Processing Losses                | -475    | -475   | -475   | -475   | -475   | -466    | -523    | -504    | -561    | -475    |
| GROUNDWATER BASIN OVERFLOW       | 0       | 0      | 0      | 0      | -226   | -968    | -960    | -998    | -482    | -175    |
| NET OUTFLOW                      | -12,233 | -9,995 | -8,348 | -8,925 | -9,878 | -12,479 | -16,290 | -17,101 | -15,271 | -14,715 |

| NET SALT INFLOW (Tons)         | 3,513  | 3,404  | 7,636  | 4,151  | 1,390  | -1,390 | -3,712 | -4,224 | -4,260 | -1,903 |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CUMULATIVE SALT INFLOW (Tons)* | 59,120 | 62,524 | 70,160 | 74,311 | 75,701 | 74,311 | 70,599 | 66,375 | 62,115 | 60,212 |

| TDS Concentration Calculations           | 1991    | 1992    | 1993    | 1994    | 1995    | 1996    | 1997    | 1998    | 1999    | 2000    |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Net Basin Recharge (AF)                  | -8,389  | -6,628  | 14,974  | 592     | 13,031  | 1,873   | -1,390  | 2,511   | -4,911  | -3,674  |
| Basin Storage (HI Method)(AF)            | 201,787 | 195,159 | 210,133 | 210,725 | 223,756 | 225,629 | 224,239 | 226,750 | 221,839 | 218,165 |
| Total Salt in Main Basin (tons)          | 188,718 | 192,122 | 199,758 | 203,909 | 205,299 | 203,909 | 200,197 | 195,973 | 191,713 | 189,810 |
| Main Basin TDS Concentration (mg/L)      | 688     | 725     | 700     | 712     | 675     | 665     | 657     | 636     | 636     | 640     |
| Cumulative Increase in TDS Conc (mg/L)** | 238     | 275     | 250     | 262     | 225     | 215     | 207     | 186     | 186     | 190     |

<sup>\*</sup> Basinwide salt buildup since 1973

<sup>\*\*</sup> Basinwide TDS concentration increase relative to 1973 value of 450 mg/L



| SALT INFLOW COMPONENTS     | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NATURAL STREAM RECHARGE    | 3,666  | 3,267  | 7,097  | 3,105  | 5,796  | 4,962  | 3,260  | 4,078  | 4,367  | 5,080  |
| Total Arroyo Valle         | 1,823  | 1,399  | 2,833  | 1,081  | 3,652  | 2,274  | 1,450  | 2,691  | 2,554  | 2,974  |
| Flood releases recharge    | 0      | 193    | 302    | 0      | 731    | 0      | 0      | 327    | 0      | 1,383  |
| Non Flood Natural Inflow   | 1,823  | 1,206  | 2,531  | 1,081  | 2,921  | 2,274  | 1,450  | 2,364  | 2,554  | 1,591  |
| Arroyo Mocho               | 575    | 886    | 2,996  | 838    | 1,241  | 1,813  | 839    | 380    | 540    | 1,211  |
| Arroyo Las Positas         | 1,268  | 982    | 1,268  | 1,186  | 903    | 875    | 971    | 1,007  | 1,273  | 895    |
| AV PRIOR RIGHTS            | 224    | 399    | 416    | 383    | 80     | 524    | 219    | 100    | 407    | 0      |
| ARTIFICIAL STREAM RECHARGE | 1,351  | 3,503  | 2,811  | 2,480  | 1,949  | 1,266  | 1,359  | 727    | 1,248  | 1,690  |
| Arroyo Valle               | 501    | 647    | 399    | 476    | 619    | 330    | 782    | 727    | 686    | 635    |
| Arroyo Mocho               | 839    | 2,855  | 2,412  | 2,004  | 1,300  | 914    | 577    | 0      | 562    | 1,055  |
| Arroyo Las Positas         | 11     | 1      | 0      | 0      | 30     | 22     | 0      | 0      | 0      | 0      |
| INJECTION WELL RECHARGE    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| RAINFALL RECHARGE          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Lake Recharge              | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| LEAKAGE                    | 313    | 333    | 352    | 372    | 393    | 414    | 436    | 458    | 481    | 504    |
| APPLIED WATER RECHARGE     | 5,074  | 5,606  | 4,618  | 5,090  | 4,824  | 3,223  | 5,157  | 6,258  | 6,152  | 5,079  |
| SUBSURFACE BASIN INFLOW    | 1,970  | 1,970  | 1,970  | 1,970  | 2,513  | 2,309  | 2,174  | 2,214  | 2,106  | 1,997  |
| NET INFLOW                 | 12,598 | 15,078 | 17,264 | 13,400 | 15,555 | 12,698 | 12,605 | 13,835 | 14,761 | 14,350 |

| OUTFLOW COMPONENTS               | 2001    | 2002    | 2003    | 2004    | 2005    | 2006   | 2007   | 2008    | 2009    | 2010    |
|----------------------------------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|
| MUNICIPAL PUMPAGE                | -10,467 | -12,061 | -11,096 | -12,419 | -10,057 | -5,557 | -8,423 | -9,271  | -14,577 | -12,609 |
| Zone 7 Wells - Hop, Stone, COL   | -3,867  | -3,690  | -3,360  | -4,198  | -1,858  | -1,382 | -1,340 | -3,217  | -3,920  | -1,290  |
| Zone 7 Wells - Mocho             | -1,745  | -3,322  | -2,271  | -3,762  | -3,003  | -1,170 | -1,976 | -1,402  | -5,448  | -6,563  |
| Demin Salts Exported from Valley | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0       | -798    | 2,759   |
| Other Pumpage                    | -4,855  | -5,049  | -5,465  | -4,459  | -5,196  | -3,005 | -5,107 | -4,651  | -5,208  | -4,756  |
| AGRICULTURAL PUMPAGE             | -182    | -94     | -73     | -79     | -80     | -46    | -43    | -68     | -68     | -73     |
| MINING USE                       | -4,520  | -475    | -276    | -438    | -454    | -658   | -584   | -714    | -1,341  | -1,428  |
| Stream Export                    | -4,006  | -111    | 0       | -84     | -94     | -218   | -274   | -305    | -913    | -1,057  |
| Evaporation                      | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0       | 0       | 0       |
| Processing Losses                | -514    | -364    | -276    | -354    | -360    | -440   | -310   | -409    | -428    | -371    |
| GROUNDWATER BASIN OVERFLOW       | 0       | 0       | 0       | 0       | 0       | 0      | -738   | -1,080  | -171    | 0       |
| NET OUTFLOW                      | -15,169 | -12,630 | -11,445 | -12,936 | -10,591 | -6,261 | -9,788 | -11,133 | -16,157 | -14,110 |

| NET SALT INFLOW (Tons)         | -2,571 | 2,448  | 5,819  | 464    | 4,964  | 6,437  | 2,817  | 2,702  | -1,396 | 240    |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CUMULATIVE SALT INFLOW (Tons)* | 57,641 | 60,089 | 65,908 | 66,372 | 71,336 | 77,773 | 80,590 | 83,292 | 81,896 | 82,136 |

| TDS Concentration Calculations           | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Net Basin Recharge (AF)                  | -11,666 | 62      | 8,309   | -4,560  | 13,193  | 8,790   | -3,639  | -3,011  | -4,997  | 4,290   |
| Basin Storage (HI Method)(AF)            | 206,499 | 206,561 | 214,870 | 210,310 | 223,503 | 232,293 | 228,654 | 225,643 | 220,646 | 224,936 |
| Total Salt in Main Basin (tons)          | 187,239 | 189,687 | 195,506 | 195,970 | 200,934 | 207,371 | 210,188 | 212,890 | 211,494 | 211,734 |
| Main Basin TDS Concentration (mg/L)      | 667     | 676     | 670     | 686     | 662     | 657     | 677     | 695     | 706     | 693     |
| Cumulative Increase in TDS Conc (mg/L)** | 217     | 226     | 220     | 236     | 212     | 207     | 227     | 245     | 256     | 243     |

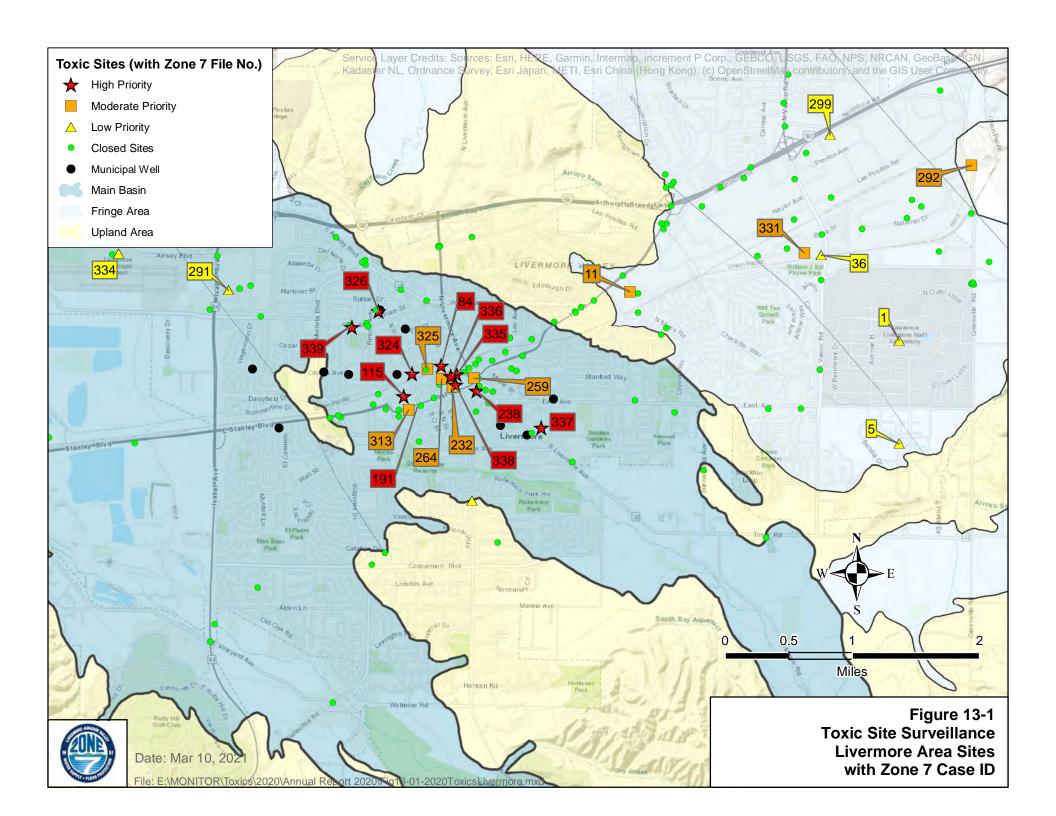
<sup>\*</sup> Basinwide salt buildup since 1973

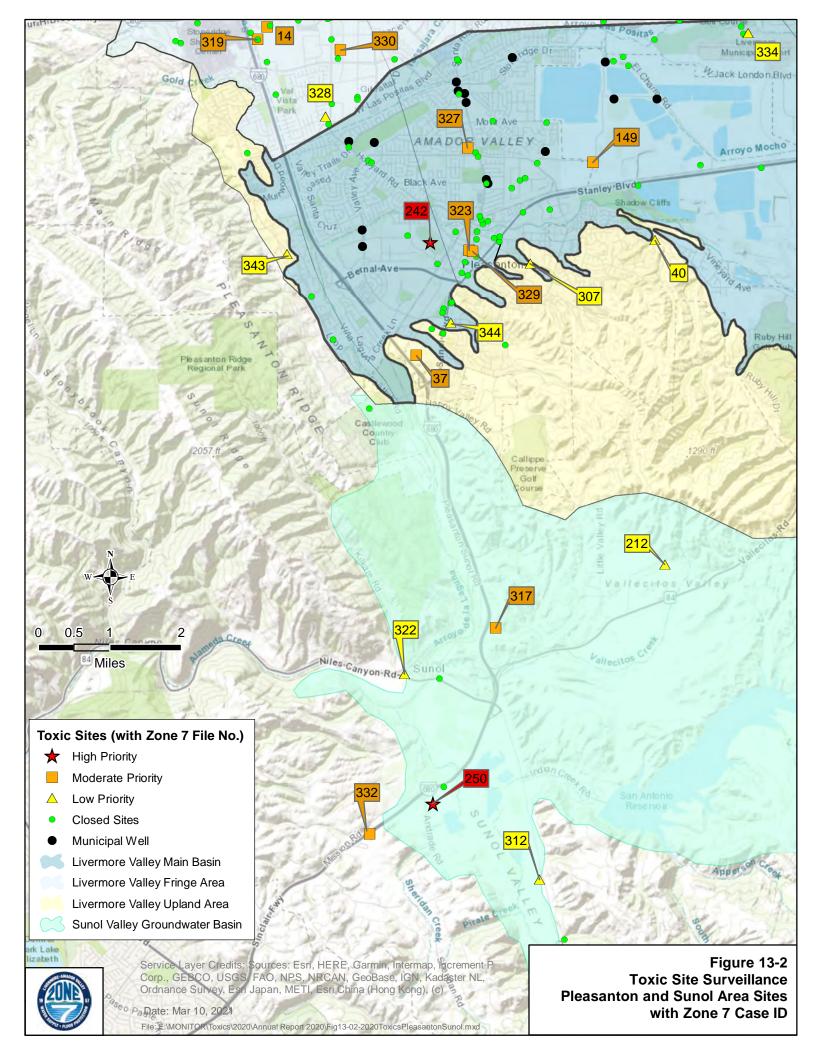
<sup>\*\*</sup> Basinwide TDS concentration increase relative to 1973 value of 450 mg/L

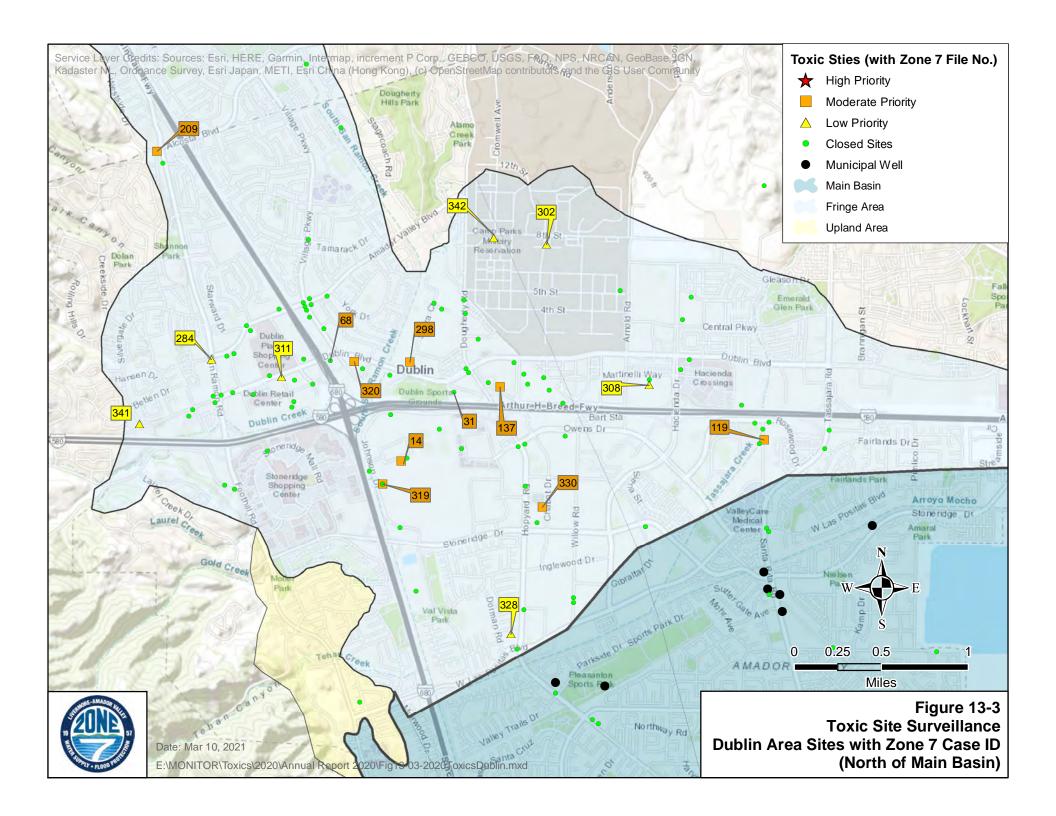


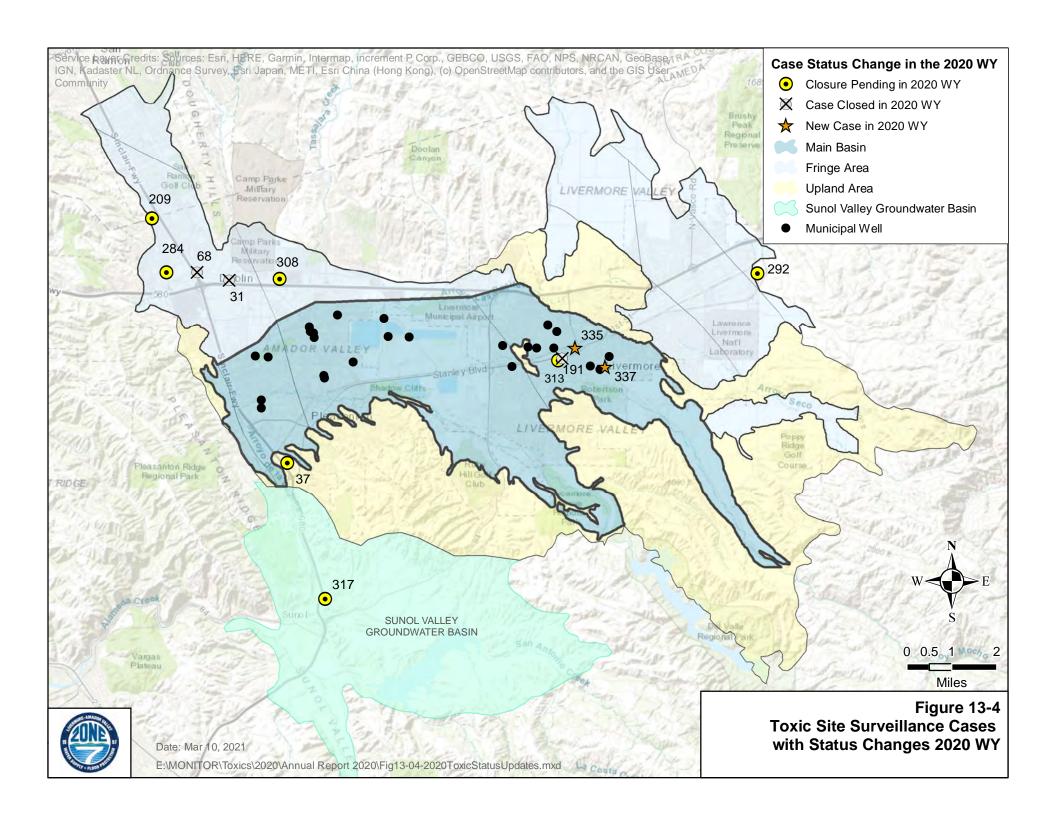
## TABLE 13-2 HISTORICAL SALT LOADING (in tons) 1974 TO 2020 WATER YEARS

| SALT INFLOW COMPONENTS     | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | AVG    | TOTAL   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| NATURAL STREAM RECHARGE    | 5,459  | 2,026  | 2,242  | 1,820  | 3,735  | 3,366  | 4,948  | 1,315  | 3,531  | 1,952  | 3,654  | 171,744 |
| Total Arroyo Valle         | 3,039  | 553    | 963    | 356    | 1,664  | 1,620  | 2,392  | 249    | 1,185  | 285    | 1,190  | 55,953  |
| Flood releases recharge    | 150    | 0      | 0      | 0      | 0      | 0      | 404    | 0      | -53    | 0      | 165    | 7,751   |
| Non Flood Natural Inflow   | 2,889  | 553    | 963    | 356    | 1,664  | 1,620  | 1,988  | 249    | 1,238  | 285    | 1,026  | 48,202  |
| Arroyo Mocho               | 2,056  | 949    | 751    | 973    | 1,472  | 945    | 1,882  | 430    | 1,648  | 834    | 1,335  | 62,735  |
| Arroyo Las Positas         | 364    | 524    | 528    | 491    | 599    | 801    | 674    | 636    | 698    | 833    | 1,129  | 53,056  |
| AV PRIOR RIGHTS            | 384    | 196    | 409    | 3      | 395    | 288    | 91     | 208    | 249    | 249    | 261    | 12,290  |
| ARTIFICIAL STREAM RECHARGE | 882    | 2,851  | 2,519  | 1,483  | 1,689  | 2,571  | 2,046  | 1,494  | 558    | 675    | 1,598  | 75,100  |
| Arroyo Valle               | 167    | 1,178  | 573    | 339    | 1,667  | 1,299  | 667    | 924    | 442    | 556    | 541    | 25,419  |
| Arroyo Mocho               | 698    | 1,649  | 1,943  | 1,120  | 0      | 1,272  | 1,379  | 570    | 116    | 119    | 981    | 46,129  |
| Arroyo Las Positas         | 17     | 24     | 3      | 24     | 22     | 0      | 0      | 0      | 0      | 0      | 76     | 3,552   |
| INJECTION WELL RECHARGE    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 26     | 1,199   |
| RAINFALL RECHARGE          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| Lake Recharge              | 0      | 0      | 0      | 1,603  | 2,736  | 3,641  | 6,743  | 8,295  | 6,864  | 3,979  | 720    | 33,861  |
| LEAKAGE                    | 527    | 551    | 403    | 600    | 625    | 651    | 677    | 703    | 778    | 821    | 299    | 14,038  |
| APPLIED WATER RECHARGE     | 4,295  | 6,074  | 8,158  | 5,654  | 6,505  | 5,251  | 4,421  | 5,707  | 5,625  | 6,588  | 5,801  | 272,629 |
| SUBSURFACE BASIN INFLOW    | 2,024  | 2,092  | 448    | 1,834  | 2,051  | 2,078  | 2,106  | 2,078  | 2,187  | 2,201  | 1,999  | 93,959  |
| IET INFLOW                 | 13,571 | 13,790 | 14,179 | 11,394 | 15,000 | 14,205 | 14,289 | 11,505 | 12,928 | 12,486 | 13,637 | 640,959 |


| OUTFLOW COMPONENTS               | 2011    | 2012    | 2013    | 2014    | 2015   | 2016   | 2017   | 2018   | 2019    | 2020    | AVERAGE | TOTAL    |
|----------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|---------|---------|---------|----------|
| MUNICIPAL PUMPAGE                | -9,873  | -16,765 | -12,781 | -11,831 | -6,080 | -6,194 | -7,635 | -8,700 | -10,427 | -12,388 | -10,163 | -339,102 |
| Zone 7 Wells - Hop, Stone, COL   | -1,197  | -2,785  | -3,595  | -2,639  | -870   | -750   | -1,107 | -1,938 | -1,982  | -4,441  | -2,470  | -54,340  |
| Zone 7 Wells - Mocho             | -4,040  | -8,204  | -3,997  | -3,713  | -1,080 | -666   | -2,200 | -2,642 | -4,895  | -4,890  | -3,072  | -67,576  |
| Demin Salts Exported from Valley | 2,006   | 4,064   | 2,479   | 1,047   | 76     | 183    | 949    | 1,168  | 1,869   | 1,231   | 362     | 17,033   |
| Other Pumpage                    | -4,625  | -5,766  | -5,179  | -5,583  | -4,128 | -4,779 | -4,326 | -4,120 | -3,549  | -3,057  | -4,621  | -217,186 |
| AGRICULTURAL PUMPAGE             | -68     | -77     | -393    | -515    | -490   | -92    | -84    | -87    | -101    | -97     | -666    | -31,295  |
| MINING USE                       | -2,756  | -3,064  | -3,042  | -502    | -417   | -378   | -364   | -388   | -368    | -363    | -3,412  | -160,375 |
| Stream Export                    | -2,368  | -2,665  | -2,655  | -442    | 0      | 0      | 0      | 0      | 0       | 0       | -2,211  | -103,914 |
| Evaporation                      | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0        |
| Processing Losses                | -388    | -399    | -387    | -364    | -417   | -378   | -364   | -388   | -372    | -363    | -415    | -19,485  |
| GROUNDWATER BASIN OVERFLOW       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | -506   | -758    | -113    | -435    | -20,450  |
| NET OUTFLOW                      | -12,697 | -19,906 | -16,216 | -12,848 | -6,987 | -6,664 | -8,083 | -9,681 | -11,654 | -12,961 | -11,557 | -543,173 |

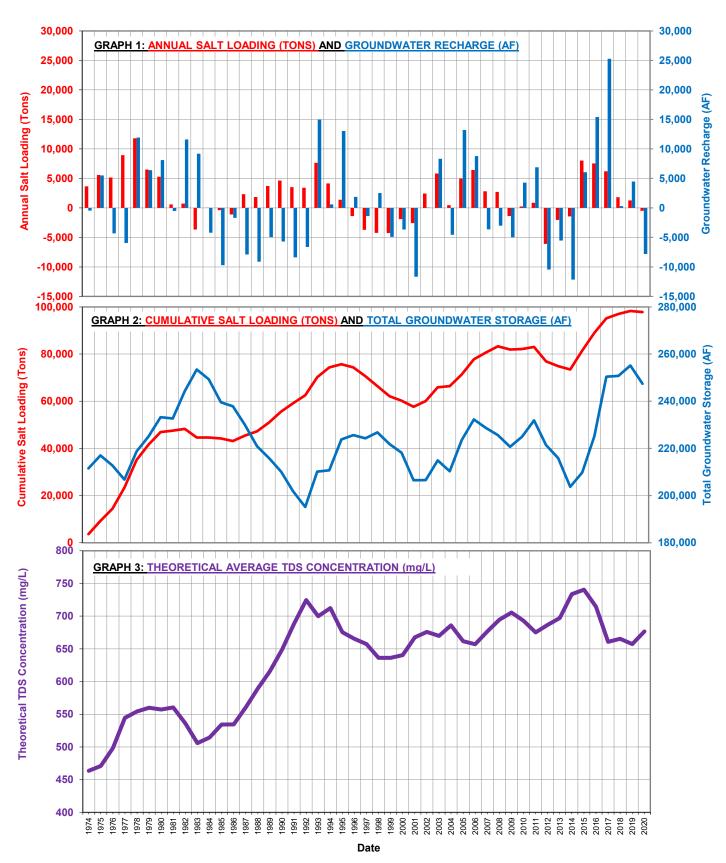

| NET SALT INFLOW (Tons)         | 874    | -6,116 | -2,037 | -1,454 | 8,013  | 7,541  | 6,206  | 1,824  | 1,274  | -475   | 2,081 | 97,786 |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| CUMULATIVE SALT INFLOW (Tons)* | 83,010 | 76,894 | 74,857 | 73,403 | 81,416 | 88,957 | 95,163 | 96,987 | 98,261 | 97,786 |       |        |


| TDS Concentration Calculations           | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | 2020    |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Net Basin Recharge (AF)                  | 6,893   | -10,438 | -5,542  | -12,153 | 6,037   | 15,405  | 25,259  | 285     | 4,482   | -7,932  |
| Basin Storage (HI Method)(AF)            | 231,829 | 221,391 | 215,849 | 203,696 | 209,733 | 225,138 | 250,397 | 250,682 | 255,164 | 247,232 |
| Total Salt in Main Basin (tons)          | 212,608 | 206,492 | 204,455 | 203,001 | 211,014 | 218,555 | 224,761 | 226,585 | 227,859 | 227,384 |
| Main Basin TDS Concentration (mg/L)      | 675     | 687     | 697     | 734     | 741     | 715     | 661     | 665     | 657     | 677     |
| Cumulative Increase in TDS Conc (mg/L)** | 225     | 237     | 247     | 284     | 291     | 265     | 211     | 215     | 207     | 227     |


<sup>\*</sup> Basinwide salt buildup since 1973

<sup>\*\*</sup> Basinwide TDS concentration increase relative to 1973 value of 450 mg/L












## FIGURE 13-5 MAIN BASIN SALT LOADING AND TDS CONCENTRATION 1974 to 2020 WATER YEARS



## 14 References

- Alameda County Planning Department 1981, Planning Commission Action on Specific Plan for Livermore-Amador Valley Quarry Area Reclamation, Letter to the Board of Supervisors.
- Cal Engineering & Geology, 2016, Preliminary Distress Evaluation/Emergency Stabilization Measures, Zone 7 Water Agency Cope Lake Well House #1, Prepared for Zone 7, September 22, 2016.
- California Department of Water Resources (DWR) 1974. California's Groundwater, Bulletin 118-2, Evaluation of Ground Water Resources: Livermore and Sunol Valleys.
- \_\_\_\_\_. 2003. California's Groundwater, Bulletin 118—Update 2003.
- California Regional Water Quality Control Board, San Francisco Bay Region, 2011, San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan).
- Camp Dresser and McKee Inc. 1982. Wastewater Management Plan for the Unsewered, Unincorporated area of Alameda Creek Watershed above Niles. Prepared for Zone 7 of Alameda County Flood Control and Water Conservation District.
- City of Livermore, 2004. South Livermore Valley Specific Plan, Adopted November 17, 1997 and Amended February 2004.
- DDW, 2020, Drinking Water Sample Collection Guidance for Per- and Poly-Fluoroalkyl Substances (PFAS). Prepared by the California State Water Resources Control Board Division of Drinking Water. Online at: <a href="https://www.waterboards.ca.gov/drinking\_water/certlic/drinkingwater/documents/pfos\_and\_pfoa/ddw\_pfas\_sampling\_guidance\_may\_2020.pdf">https://www.waterboards.ca.gov/drinking\_water/certlic/drinkingwater/documents/pfos\_and\_pfoa/ddw\_pfas\_sampling\_guidance\_may\_2020.pdf</a>
- Jacobs Engineering, Inc., 2020. PFAS Potential Source Investigation Technical Memorandum. Prepared for Zone 7 Water Agency.
- Kennedy/Jenks Consultants, 2012, Revision No. 3 Report of Waste Discharge for Concannon Winery, Livermore, California, August 29, 2012.

Norfleet Consultants. 2004. Preliminary Stratigraphic Evaluation, West Side of the Main Basin, Livermore-Amador Groundwater Basin.

- SWRCB. 2014. Groundwater Information Sheet, Hexavalent Chromium, Prepared by the State Water Resources Control Board, Division of Water Quality, GAMA Program, Revised May 2014.
- Solley, W. B., R. R. Pierce, H. A. Perlman (USGS). 1998. Estimated use of water in the United States in 1995. US Geological Survey circular; 1200. Denver, Colo: US Geological Survey. Report nr 06079007X. ix, 71p.
- TRE Altamira. 2016. Historical SqueeSAR ground deformation analysis over Livermore and Pleasanton, (CA) using ERS, ENVISAT and Sentinel satellites.
- Zone 7 (Alameda Flood Control and Water Conservation District, Zone 7). 1982. Wastewater Management Plan for the Unsewered, Unincorporated Area of Alameda Creek Watershed above Niles, prepared by Zone 7 Water Agency, Clean Water Grant Project Number C–06–2777.
- ———. 1987a. Statement on Zone 7 Groundwater Management. August. Prepared by Zone 7 Board Committee.
- ——. 1987b. Agreement Between Zone 7 of the Alameda County Flood Control and Water Conservation District and Kaiser Sand & Gravel Company.
- ———. 1992. Main Groundwater Basin Natural Safe Yield, Internal Memo prepared by Zone 7 Water Agency.
- ———. 2003. Draft Report, Well Master Plan, Prepared by CH2MHill for Zone 7 Water Agency.
- ———. 2004. Salt Management Plan. Prepared by Zone 7 Water Agency.
- ———. 2005a. Groundwater Management Plan. Prepared by Jones & Stokes and Zone 7 Water Agency.
- ——. 2005b. Well Master Plan Conformed Environmental Impact Report, Prepared by ESA for Zone 7 Water Agency.

———. 2006a. Future Groundwater Demineralization Siting Study Report. Internal report prepared by Zone 7 Water Agency. ———. 2006s. Groundwater Model Update to Version 3.0. Internal memo prepared by Zone 7 Water Agency. ———. 2006c. Groundwater Modeling for Demineralization Plant Simulations. July. Internal report prepared by Zone 7 Water Agency. ———. 2006d. Annual Report for the Groundwater Management Program—2005 Water Year. Prepared by Zone 7, October 2006. ———. 2007. Annual Report for the Groundwater Management Program—2006 Water Year. Prepared by Zone 7, June 2007. . 2008a. Groundwater Outflow into the Alamo Canal and Arroyo de la Laguna, February 29, 2008, Internal memo prepared by Zone 7 Water Agency. ———. 2008b. Annual Report for the Groundwater Management Program—2007 Water Year. Prepared by Zone 7, June 2008. ———. 2009. Annual Report for the Groundwater Management Program—2008 Water Year. Prepared by Zone 7, May 7, 2009. ———. 2010. Annual Report for the Groundwater Management Program—2009 Water Year. Prepared by Zone 7, May 2010. ———. 2011a. Hydrostratigraphic Investigation of the Aquifer Recharge Potential for Lakes C and D of the Chain of Lakes, Livermore, California. Prepared by Zone 7 in cooperation with the Department of Water Resources' Local Groundwater Assistance Grant Program, May 2010. ———. 2011b. Annual Report for the Groundwater Management Program—2010 Water Year. Prepared by Zone 7, June 2011. ———. 2011c. 2011 Water Supply Evaluation. Prepared by Zone 7, July 2011.

———. 2012a. Toxic Sites Surveillance Annual Report 2011. Prepared by

Zone 7, April 2012.

———. 2012b. Annual Report for the Groundwater Management Program—2011 Water Year. Prepared by Zone 7, July 2012. ———. 2013. Annual Report for the Groundwater Management Program—2012 Water Year. Prepared by Zone 7, May 2013. ———. 2014a. Preliminary Lake Use Evaluation for the Chain of Lakes. Prepared by Zone 7, March 2014. ———. 2014b. Annual Report for the Groundwater Management Program—2013 Water Year. Prepared by Zone 7, August 2014. ———. 2015a. Annual Report for the Groundwater Management Program—2014 Water Year. Prepared by Zone 7, July 2015. ———. 2015b. Nutrient Management Plan, Livermore Valley Groundwater Basin. Prepared by Zone 7, July 2015. ———. 2016a. 2015 Study of Nitrate Occurrences in South Livermore. Prepared by Zone 7, January 2016. ———. 2016b. Water Supply Evaluation Update. Prepared by Zone 7, February 2016. ———. 2016c. 2015 Urban Water Management Plan. Prepared by Zone 7, March 31, 2016. ———. 2016d. Annual Report for the Groundwater Management Program—2015 Water Year. Prepared by Zone 7, June 2016. ---. 2016e. Alternative Groundwater Sustainability Plan for the Livermore Valley Groundwater Basin, December 2016.

——. 2017a. Decision to Become the Exclusive Groundwater Sustainability Agency for Livermore Valley Groundwater Basin (DWR Basin 2-10), notification letter prepared by Zone 7 and submitted to

———. 2017b. Annual Report for the Groundwater Management Program,

2016 Water Year. Prepared by Zone 7, July 2017.

DWR, January 2017.

- ——. 2018. 2017 Water Year, Groundwater Management Program Annual Report, Livermore Valley Groundwater Basin. Prepared by Zone 7, March 2018.
- ———. 2019. 2018 Water Year, Groundwater Management Program Annual Report, Livermore Valley Groundwater Basin. Prepared by Zone 7, March 2019.
- ——. 2020. 2019 Water Year, Groundwater Management Program Annual Report, Livermore Valley Groundwater Basin. Prepared by Zone 7, March 2020



Zone 7 Water Agency 100 North Canyons Parkway, Livermore, CA 94551